Full metadata record

DC Field Value Language
dc.contributor.authorKim, Ki-Tae-
dc.contributor.authorAli, Ghulam-
dc.contributor.authorChung, Kung Yoon-
dc.contributor.authorYoon, Chong Seung-
dc.contributor.authorYashiro, Hitoshi-
dc.contributor.authorSun, Yang-Kook-
dc.contributor.authorLu, Jun-
dc.contributor.authorAmine, Khalil-
dc.contributor.authorMyung, Seung-Taek-
dc.date.accessioned2024-01-20T10:32:42Z-
dc.date.available2024-01-20T10:32:42Z-
dc.date.created2021-09-05-
dc.date.issued2014-02-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127173-
dc.description.abstractFor the first time, we report the electrochemical activity of anatase TiO2 nanorods in a Na cell. The anatase TiO2 nanorods were synthesized by a hydrothermal method, and their surfaces were coated by carbon to improve the electric conductivity through carbonization of pitch at 700 degrees C for 2 h in Ar flow. The resulting structure does not change before and after the carbon coating, as confirmed by X-ray diffraction (XRD). Transmission electron microscopic images confirm the presence of a carbon coating on the anatase TiO2 nanorods. In cell tests, anodes of bare and carbon-coated anatase TiO2 nanorods exhibit stable cycling performance and attain a capacity of about 172 and 193 mAh g(-1) on the first charge; respectively, in the voltage range of 3-0 V. With the help of the conductive carbon layers, the carbon-coated anatase TiO2 delivers more capacity at high rates, 104 mAh g(-1) at the 10 C-rate (3.3 A g(-1)), 82 mAh g(-1) at the 30 C-rate (10 A g(-1)), and 53 mAh g(-1) at the 100 C-rate (33 A g(-1)). By contrast, the anode of bare anatase TiO2 nanorods delivers only about 38 mAh g(-1) at the 10 C-rate (3.3 A g(-1)). The excellent cyclability and high-rate capability are the result of a Na+ insertion and extraction reaction into the host structure coupled with Ti4+/3+ redox reaction, as revealed by X-ray absorption spectroscopy.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectNANOSTRUCTURED TIO2-
dc.subjectION INTERCALATION-
dc.subjectRUTILE-
dc.subjectTIN-
dc.subjectNANOCOMPOSITES-
dc.subjectLI-
dc.titleAnatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/nl402747x-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.14, no.2, pp.416 - 422-
dc.citation.titleNANO LETTERS-
dc.citation.volume14-
dc.citation.number2-
dc.citation.startPage416-
dc.citation.endPage422-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000331343900004-
dc.identifier.scopusid2-s2.0-84894216143-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOSTRUCTURED TIO2-
dc.subject.keywordPlusION INTERCALATION-
dc.subject.keywordPlusRUTILE-
dc.subject.keywordPlusTIN-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusLI-
dc.subject.keywordAuthorNatase TiO2-
dc.subject.keywordAuthornanorods-
dc.subject.keywordAuthorcarbon coating-
dc.subject.keywordAuthorintercalation-
dc.subject.keywordAuthoranode-
dc.subject.keywordAuthorsodium battery-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE