Full metadata record

DC Field Value Language
dc.contributor.authorYou, Jin-
dc.contributor.authorMoon, Hyowon-
dc.contributor.authorLee, Boo Yong-
dc.contributor.authorJin, Ju Young-
dc.contributor.authorChang, Zi Eun-
dc.contributor.authorKim, So Yeon-
dc.contributor.authorPark, Jungyul-
dc.contributor.authorHwang, Yu-Shik-
dc.contributor.authorKim, Jinseok-
dc.date.accessioned2024-01-20T10:33:29Z-
dc.date.available2024-01-20T10:33:29Z-
dc.date.created2021-09-05-
dc.date.issued2014-01-22-
dc.identifier.issn0021-9290-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127211-
dc.description.abstractConventional cardiac physiology experiments investigate in vitro beat frequency using cells isolated from adult or neonatal rat hearts. In this study, we show that various cantilever shapes and drug treatments alter cardiomyocyte contraction force in vitro. Four types of cantilevers were used to compare the contractile forces: flat, peg patterned, grooved, and peg and grooved. Contraction force was represented as bending deflection of the cantilever end. The deflections of the flat, peg patterned, grooved, and peg and grooved cantilevers were 24.2 nN, 41.6 nN, 121 nN, and 134.2 nN, respectively. We quantified the effect of drug treatments on cardiomyocyte contractile forces on the grooved cantilever using Digoxin, Isoproterenol, and BayK8644, all of which increase contractile force, and Verapamil, which decreases contractile force. The cardiomyocyte contractile force without drugs decreased 8 days after culture initiation. Thus, we applied Digoxin, Isoproterenol, and BayK8644 at day 8, and Verapamil at day 5. Digoxin, Isoproterenol, and BayK8644 increased the cardiomyocyte contractile forces by 19.31%, 9.75%, and 23.81%, respectively. Verapamil decreased the contraction force by 48.06%. In summary, contraction force changes in response to adhesion surface topology and various types of drug treatments. We observed these changes by monitoring cell alignment, adhesion, morphology, and bending displacement with cantilever sensors. (C) 2013 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectCARDIAC MYOCYTES-
dc.subjectCALCIUM-CHANNEL-
dc.subjectHEART-RATE-
dc.subjectTISSUE-
dc.subjectCELLS-
dc.subjectCONTRACTION-
dc.subjectFABRICATION-
dc.subjectDYSFUNCTION-
dc.subjectINHIBITION-
dc.subjectMODULATION-
dc.titleCardiomyocyte sensor responsive to changes in physical and chemical environments-
dc.typeArticle-
dc.identifier.doi10.1016/j.jbiomech.2013.11.013-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF BIOMECHANICS, v.47, no.2, pp.400 - 409-
dc.citation.titleJOURNAL OF BIOMECHANICS-
dc.citation.volume47-
dc.citation.number2-
dc.citation.startPage400-
dc.citation.endPage409-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000330601700012-
dc.identifier.scopusid2-s2.0-84891836408-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARDIAC MYOCYTES-
dc.subject.keywordPlusCALCIUM-CHANNEL-
dc.subject.keywordPlusHEART-RATE-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusCONTRACTION-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusDYSFUNCTION-
dc.subject.keywordPlusINHIBITION-
dc.subject.keywordPlusMODULATION-
dc.subject.keywordAuthorCardiomyocyte sensor-
dc.subject.keywordAuthorCardiac contraction force-
dc.subject.keywordAuthorPDMS cantilever-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE