Full metadata record

DC Field Value Language
dc.contributor.authorOdkhuu, Dorj-
dc.contributor.authorJung, Dong Hyun-
dc.contributor.authorLee, Hosik-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorChoi, Seung-Hoon-
dc.contributor.authorRuoff, Rodney S.-
dc.contributor.authorPark, Noejung-
dc.date.accessioned2024-01-20T10:34:32Z-
dc.date.available2024-01-20T10:34:32Z-
dc.date.created2021-09-05-
dc.date.issued2014-01-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127262-
dc.description.abstractThe inclusion of heptagonal, octagonal, or larger rings in an sp(2)-bonded carbon network introduces negative Gaussian curvature that can lead to a high network porosity. Here we investigated a particular negatively curved nonplanar sp(2)-carbon structure namely 688P schwarzite, with a view toward the possible use of negatively curved carbons as lithium ion battery anodes. Our first principles calculations, show that the presence of pores in schwarzites can lead to three-dimensional Li ion diffusion paths with relatively small energy barriers. We calculated the binding energy of Li (which donates 1 electron to the schwarzite) in different positions in the schwarzite structure, and the open-circuit voltage (OCV) with respect to Li metal and found that this schwarzite has a positive OCV for a Li concentration as high as LiC4. The advantages of the particular schwarzite studied here for use as an anode are expected to be present in other sp2-bonded carbon networks that feature large polygonal rings. (C) 2013 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectINITIO MOLECULAR-DYNAMICS-
dc.subjectGRAPHITIC CARBON-
dc.subjectSPONGY CARBON-
dc.subjectSTORAGE-
dc.subjectLI-
dc.subjectADSORPTION-
dc.subjectDIFFUSION-
dc.subjectCAPACITY-
dc.subjectGRAPHENE-
dc.subjectC-60-
dc.titleNegatively curved carbon as the anode for lithium ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2013.08.033-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.66, pp.39 - 47-
dc.citation.titleCARBON-
dc.citation.volume66-
dc.citation.startPage39-
dc.citation.endPage47-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000327575200005-
dc.identifier.scopusid2-s2.0-84886776730-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusC-60-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusGRAPHITIC CARBON-
dc.subject.keywordPlusSPONGY CARBON-
dc.subject.keywordAuthorNegatively curved carbon-
dc.subject.keywordAuthorLithium ion battery-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorDensity functional theory-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE