Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bae, Wan Ki | - |
dc.contributor.author | Park, Young-Shin | - |
dc.contributor.author | Lim, Jaehoon | - |
dc.contributor.author | Lee, Donggu | - |
dc.contributor.author | Padilha, Lazaro A. | - |
dc.contributor.author | McDaniel, Hunter | - |
dc.contributor.author | Robel, Istvan | - |
dc.contributor.author | Lee, Changhee | - |
dc.contributor.author | Pietryga, Jeffrey M. | - |
dc.contributor.author | Klimov, Victor I. | - |
dc.date.accessioned | 2024-01-20T11:31:36Z | - |
dc.date.available | 2024-01-20T11:31:36Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2013-10 | - |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/127612 | - |
dc.description.abstract | Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. | - |
dc.language | English | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.subject | SEMICONDUCTOR NANOCRYSTALS | - |
dc.subject | OPTICAL GAIN | - |
dc.subject | ELECTROLUMINESCENCE | - |
dc.subject | SUPPRESSION | - |
dc.subject | DEVICES | - |
dc.title | Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/ncomms3661 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | NATURE COMMUNICATIONS, v.4 | - |
dc.citation.title | NATURE COMMUNICATIONS | - |
dc.citation.volume | 4 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000326473300002 | - |
dc.identifier.scopusid | 2-s2.0-84892418299 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SEMICONDUCTOR NANOCRYSTALS | - |
dc.subject.keywordPlus | OPTICAL GAIN | - |
dc.subject.keywordPlus | ELECTROLUMINESCENCE | - |
dc.subject.keywordPlus | SUPPRESSION | - |
dc.subject.keywordPlus | DEVICES | - |
dc.subject.keywordAuthor | Auger Recombination | - |
dc.subject.keywordAuthor | Efficiency Roll-Off | - |
dc.subject.keywordAuthor | Droop | - |
dc.subject.keywordAuthor | Quantum Dot | - |
dc.subject.keywordAuthor | Light-Emitting Diode | - |
dc.subject.keywordAuthor | Core/Shell | - |
dc.subject.keywordAuthor | *투고완료-Los Alamos National Lab.(USA) 소속일때 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.