Full metadata record

DC Field Value Language
dc.contributor.authorLee, Joohwi-
dc.contributor.authorLee, Seung-Cheol-
dc.contributor.authorHwang, Cheol Seong-
dc.contributor.authorChoi, Jung-Hae-
dc.date.accessioned2024-01-20T11:32:10Z-
dc.date.available2024-01-20T11:32:10Z-
dc.date.created2021-09-01-
dc.date.issued2013-10-
dc.identifier.issn2050-7526-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127643-
dc.description.abstractThermodynamic stabilities of various phases in ZnO-SnO2 systems were investigated based on the Gibbs energy obtained from density functional theory (DFT) calculations. The pressure-temperature (p-T) phase diagram was determined; the coexistence of ZnO and SnO2 was the most stable phase in the low temperature region at zero external pressure, while Zn2SnO4 with the inverse spinel structure and ZnSnO3 with the lithium niobate structure were stable at the high temperature and high pressure region. Various octahedral configurations of the inverse spinel structures of Zn2SnO4 were considered. The calculated results showed feasible agreement with experimental data on the phase stability and explained well the experimental observation of the mixed state of Zn2SnO4, ZnO and SnO2 at mid-range temperatures and pressures. Considering the atomic structures, bulk moduli and thermodynamic stabilities, the local density approximation calculations were found to describe experimental observations more accurately than the generalized gradient approximation calculations. The phase transitions in the ZnO-SnO2 system were found to be dominated by the changes in both the Zn-O bond length and the coordination number of Zn, rather than changes in the bond length of Sn-O and the coordination number of Sn.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectTOTAL-ENERGY CALCULATIONS-
dc.subjectFIELD-EFFECT TRANSISTORS-
dc.subjectZNSNO3-
dc.subjectSTANNATE-
dc.subjectTRANSITIONS-
dc.subjectSNO2-
dc.subjectZNO-
dc.subject1ST-PRINCIPLES-
dc.subjectPERFORMANCE-
dc.subjectZN2SNO4-
dc.titleThermodynamic stability of various phases of zinc tin oxides from ab initio calculations-
dc.typeArticle-
dc.identifier.doi10.1039/c3tc30960f-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY C, v.1, no.39, pp.6364 - 6374-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY C-
dc.citation.volume1-
dc.citation.number39-
dc.citation.startPage6364-
dc.citation.endPage6374-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000324757400024-
dc.identifier.scopusid2-s2.0-84884517014-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusZNSNO3-
dc.subject.keywordPlusSTANNATE-
dc.subject.keywordPlusTRANSITIONS-
dc.subject.keywordPlusSNO2-
dc.subject.keywordPlusZNO-
dc.subject.keywordPlus1ST-PRINCIPLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusZN2SNO4-
dc.subject.keywordAuthorzinc tin oxides-
dc.subject.keywordAuthorab initio calculations-
dc.subject.keywordAuthorThermodynamic stability-
dc.subject.keywordAuthorp-T phase diagram-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE