Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Han, Sang Soo | - |
dc.contributor.author | Jung, Dong Hyun | - |
dc.contributor.author | Choi, Seung-Hoon | - |
dc.contributor.author | Heo, Jiyoung | - |
dc.date.accessioned | 2024-01-20T11:34:37Z | - |
dc.date.available | 2024-01-20T11:34:37Z | - |
dc.date.created | 2021-09-04 | - |
dc.date.issued | 2013-08-26 | - |
dc.identifier.issn | 1439-4235 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/127760 | - |
dc.description.abstract | We have used grand canonical Monte Carlo simulations with a first-principles-based force field to show that metal-organic frameworks (MOFs) with Li functional groups (i.e. CLi bonds) allow for exceptional H-2 uptake at ambient temperature. For example, at 298 K and 100 bar, IRMOF-1-4Li shows a total H-2 uptake of 5.54 wt% and MOF-200-27Li exhibits a total H-2 uptake of 10.30 wt%, which are much higher than the corresponding values with pristine MOFs. Li-functionalized MOF-200 (MOF-200-27Li) shows 11.84 wt% H-2 binding at 243 K and 100 bar. These hydrogen-storage capacities exceed the 2015 DOE target of 5.5 wt% H-2. Moreover, the incorporation of Li functional groups into MOFs provides more benefits, such as higher delivery amount, for H-2 uptake than previously reported Li-doped MOFs. | - |
dc.language | English | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | HYDROGEN STORAGE MATERIALS | - |
dc.subject | ADSORPTION | - |
dc.subject | CAPACITY | - |
dc.subject | SIMULATION | - |
dc.subject | BENZENES | - |
dc.subject | BINDING | - |
dc.subject | DESIGN | - |
dc.subject | MOFS | - |
dc.title | Lithium-Functionalized Metal-Organic Frameworks that Show > 10 wt% H-2 Uptake at Ambient Temperature | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/cphc.201300225 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | CHEMPHYSCHEM, v.14, no.12, pp.2698 - 2703 | - |
dc.citation.title | CHEMPHYSCHEM | - |
dc.citation.volume | 14 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 2698 | - |
dc.citation.endPage | 2703 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000323196300015 | - |
dc.identifier.scopusid | 2-s2.0-84882731668 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HYDROGEN STORAGE MATERIALS | - |
dc.subject.keywordPlus | ADSORPTION | - |
dc.subject.keywordPlus | CAPACITY | - |
dc.subject.keywordPlus | SIMULATION | - |
dc.subject.keywordPlus | BENZENES | - |
dc.subject.keywordPlus | BINDING | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordPlus | MOFS | - |
dc.subject.keywordAuthor | density functional calculations | - |
dc.subject.keywordAuthor | GCMC simulations | - |
dc.subject.keywordAuthor | hydrogen storage | - |
dc.subject.keywordAuthor | lithium | - |
dc.subject.keywordAuthor | metal-organic frameworks | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.