Full metadata record

DC Field Value Language
dc.contributor.authorHong, Seung-Ah-
dc.contributor.authorKim, Su Jin-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorLee, Youn-Woo-
dc.contributor.authorKim, Jaehoon-
dc.contributor.authorSang, Byung-In-
dc.date.accessioned2024-01-20T11:35:05Z-
dc.date.available2024-01-20T11:35:05Z-
dc.date.created2021-09-05-
dc.date.issued2013-08-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127784-
dc.description.abstractThis study investigates the effect of various process parameters during continuous synthesis in supercritical water on the physicochemical and electrochemical properties of lithium iron phosphate (LiFePO4) for use in large-scale lithium 2nd battery applications. The process parameters include reaction temperature (300-400 degrees C), precursor solution concentration (0.01-0.18 M), precursor solution flow rate (1.5-3.0 g/min), water flow rate (9.0-36.0 g/min), and residence time (9-73 s). Under supercritical fluid conditions, mixed Fe-3(PO4)(2)center dot 8H(2)O, Fe2O3, Fe2O4 particle formed; in contrast, under supercritical fluid conditions, well-crystallized LiFePO4 particles with some Fe3+ impurities (i.e., Fe2O3 and Fe2O4) were obtained. In supercritical water, an increase in the precursor concentration leads to an increase in the Fe3+ impurity content. At a high water flow rate, a significant decrease in crystallinity and the formation of Fe-3(PO4)(2)center dot 8H(2)O and Li6P6O18 center dot 9H(2)O phase rather than LiFePO4 were observed. Highly crystalline LiFePO4 with good discharge capacity was obtained with high temperature, low precursor concentration, and low flow rate conditions. Depending on the synthetic conditions, bare LiFePO4 particles exhibit discharge capacities of 55-85 mA h/g at 0.1 C-rate after 30 cycles. After carbon coating, a marginal capacity decay from 141 to 135 mA h/g was observed during the 30 charge-discharge cycles. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectCONTINUOUS HYDROTHERMAL SYNTHESIS-
dc.subjectMETAL-OXIDE NANOPARTICLES-
dc.subjectLIFEPO4 CATHODE MATERIALS-
dc.subjectLI-ION BATTERIES-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectPERFORMANCE-
dc.subjectPARTICLES-
dc.subjectOLIVINES-
dc.subjectSIZE-
dc.subjectLI4TI5O12-
dc.titleContinuous synthesis of lithium iron phosphate nanoparticles in supercritical water: Effect of process parameters-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2013.05.094-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.229, pp.313 - 323-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume229-
dc.citation.startPage313-
dc.citation.endPage323-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000324349200037-
dc.identifier.scopusid2-s2.0-84880120520-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONTINUOUS HYDROTHERMAL SYNTHESIS-
dc.subject.keywordPlusMETAL-OXIDE NANOPARTICLES-
dc.subject.keywordPlusLIFEPO4 CATHODE MATERIALS-
dc.subject.keywordPlusLI-ION BATTERIES-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusOLIVINES-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusLI4TI5O12-
dc.subject.keywordAuthorLithium iron phosphate-
dc.subject.keywordAuthorReaction mechanism-
dc.subject.keywordAuthorSupercritical hydrothermal synthesis-
dc.subject.keywordAuthorProcess parameters-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE