Injectable in situ-forming hydrogel for cartilage tissue engineering

Authors
Kwon, Jin SeonYoon, So MiKwon, Doo YeonKim, Da YeonTai, Guo ZheJin, Ling MeiSong, BoramLee, BongKim, Jae HoHan, Dong KeunMin, Byoung HyunKim, Moon Suk
Issue Date
2013-07
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY B, v.1, no.26, pp.3314 - 3321
Abstract
Methoxy polyethylene glycol-poly(epsilon-caprolactone) (MPEG-PCL; MP) diblock copolymers undergo a solution-to-gel phase transition at body temperature and serve as ideal biomaterials for drug delivery and tissue engineering. Here, we examined the potential use of a chondrocyte-loaded MP solution as an injectable, in situ-forming hydrogel for cartilage regeneration. The chondrocyte-MP solution underwent a temperature-dependent solution-to-gel phase transition in vitro, as shown by an increase in viscosity from 1 cP at 20-30 degrees C to 1.6 x 10(5) cP at 37 degrees C. The chondrocytes readily attached to and proliferated on the MP hydrogel in vitro. The chondrocyte-MP solution transitioned to a hydrogel immediately after subcutaneous injection into mice, and formed an interconnected pore structure required to support the growth, proliferation, and differentiation of the chondrocytes. The chondrocyte-MP hydrogels formed cartilage in vivo, as shown by the histological and immunohistochemical staining of glycosaminoglycans, proteoglycans, and type II collagen, the major components of cartilage. Cartilage formation increased with hydrogel implantation time, and the expression of glycosaminoglycans, and type II collagen reached maximal levels at 6 weeks post-implantation. Collectively, these data suggest that in situ-forming chondrocyte-MP hydrogels have potential as non-invasive alternatives for tissue-engineered cartilage formation.
Keywords
VIVO OSTEOGENIC DIFFERENTIATION; STEM-CELLS; GEL; CHONDROCYTES; COPOLYMERS; EFFICACY; DEXTRAN; VITRO; VIVO OSTEOGENIC DIFFERENTIATION; STEM-CELLS; GEL; CHONDROCYTES; COPOLYMERS; EFFICACY; DEXTRAN; VITRO
ISSN
2050-7518
URI
https://pubs.kist.re.kr/handle/201004/127939
DOI
10.1039/c3tb20105h
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE