Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High beta-Phase Formation in Poly(vinylidene fluoride)
- Authors
- Ahn, Yongjin; Lim, Jun Young; Hong, Soon Man; Lee, Jaerock; Ha, Jongwook; Choi, Hyoung Jin; Seo, Yongsok
- Issue Date
- 2013-06-06
- Publisher
- American Chemical Society
- Citation
- The Journal of Physical Chemistry C, v.117, no.22, pp.11791 - 11799
- Abstract
- We prepared poly(vinylidene fluoride) (PVDF)/multiwalled carbon nanotube (MWCNT) nanocomposites using the electrospinning process and investigated the effects of varying the MWCNT content, as well as the additional use of drawing and poling on the polymorphic behavior and electroactive (piezoelectric) properties of the membranes obtained. Fourier transform infrared spectroscopy and wide-angle X-ray diffraction revealed that dramatic changes occurred in the beta-phase crystal formation with the MWCNT loading. This was attributed to the nucleation effects of the MWCNTs as well as the intense stretching of the PVDF jets in the electrospinning process. The remanent polarization and piezoelectric response increased with the amount of MWCNTs and piezoelectric beta-phase crystals. A further mechanical stretching and electric poling process induced not only highly oriented beta-phase crystallites, but also very good ferroelectric and piezoelectric performances. In the drawn samples, the interfacial interaction between the functional groups on the MWCNTs and the CF2 dipole of PVDF chains produced a large amount of beta-phase content. In the poled samples, the incorporation of the MWCNTs made it easy to obtain efficient charge accumulation in the PVDF matrix, resulting in the conversion of the alpha-phase into the beta-phase as well as the enhancement of remanent polarization and mechanical displacement.
- Keywords
- POLYVINYLIDENE DIFLUORIDE; CRYSTALLINE-STRUCTURE; ELECTRICAL-PROPERTIES; NANOCOMPOSITES; TRANSITION; NANOFIBERS; TRIFLUOROETHYLENE; OXIDATION; DIPOLES; FIBERS; POLYVINYLIDENE DIFLUORIDE; CRYSTALLINE-STRUCTURE; ELECTRICAL-PROPERTIES; NANOCOMPOSITES; TRANSITION; NANOFIBERS; TRIFLUOROETHYLENE; OXIDATION; DIPOLES; FIBERS; Piezoelectric Properties; Electrospun; PVDF; CNT
- ISSN
- 1932-7447
- URI
- https://pubs.kist.re.kr/handle/201004/127972
- DOI
- 10.1021/jp4011026
- Appears in Collections:
- KIST Article > 2013
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.