Hydrogen sulfide-resilient anodes for molten carbonate fuel cells

Authors
Hoang Viet Phuc NguyenSong, Shin AeSeo, DonghoHan, JongheeYoon, Sung PilHam, Hyung ChulNam, Suk WooOthman, Mohd RosleeKim, Jinsoo
Issue Date
2013-05-15
Publisher
ELSEVIER
Citation
JOURNAL OF POWER SOURCES, v.230, pp.282 - 289
Abstract
Nickel aluminum (Ni-Al) alloy anodes have become the preferred choice in anode material and have received widespread attention in molten carbonate fuel cell (MCFC) research due to their high durability and effectiveness in resisting creep of stack loadings. They are, however, susceptible to hydrogen sulfide (H2S) poisoning, which results in pore compression and rapid reduction of active sites for the electrocatalytic reaction. In this work, iron is introduced into a conventional Ni-Al anode to improve the creep resistance and tolerance to H2S. Anodes containing 30 wt.% Fe have a low creep strain of ca. 3%, but their creep resistance is much better than that of standard anodes. Single cells operated stably over 1000 h with a low voltage loss of ca. 5 mV. When exposed to H2S, the modified anode exhibited excellent recovery from the poisoning effect. (C) 2012 Elsevier B.V. All rights reserved.
Keywords
GRAIN-BOUNDARY STRENGTH; ORDERED ALLOYS; H2S; SULFUR; DESULFURIZATION; GAS; FE; DIFFUSION; BEHAVIOR; NI3AL; GRAIN-BOUNDARY STRENGTH; ORDERED ALLOYS; H2S; SULFUR; DESULFURIZATION; GAS; FE; DIFFUSION; BEHAVIOR; NI3AL; Molten carbonate fuel cell; Anode; Creep resistance; Electro-chemical performance
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/128053
DOI
10.1016/j.jpowsour.2012.12.077
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE