Full metadata record

DC Field Value Language
dc.contributor.authorEom, KwangSup-
dc.contributor.authorCho, EunAe-
dc.contributor.authorJang, JongHyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorLim, Tae-Hoon-
dc.contributor.authorHong, Bo Ki-
dc.contributor.authorLee, Jong Hyun-
dc.date.accessioned2024-01-20T12:30:41Z-
dc.date.available2024-01-20T12:30:41Z-
dc.date.created2021-09-05-
dc.date.issued2013-05-10-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128060-
dc.description.abstractThe effects of polytetraflouroethylene (PTFE) content in the gas diffusion layer (GDL) on the performance of PEMFCs with stainless-steel bipolar plates are studied under various operation conditions, including relative humidity, cell temperature, and gas pressure. The optimal PTFE content in the GDL strongly depends on the cell temperature and gas pressure. Under unpressurized conditions, the best cell performance was obtained by the GDL without PTFE, at a cell temperature of 65 degrees C and relative humidity (RH) of 100%. However, under the conditions of high cell temperature (80 degrees C), low RH (25%) and no applied gas pressure, which is more desirable for fuel cell vehicle (FCV) applications, the GDL with 30 wt.% PTFE shows the best performance. The GDL with 30 wt.% PTFE impedes the removal of produced water and increases the actual humidity within the membrane electrode assembly (MEA). A gas pressure of 1 bar in the cell using the GDL with 30 wt.% PTFE greatly improves the performance, especially at low RH, resulting in performance that exceeds that of the cell under no gas pressure and high RH of 100%. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectGAS-DIFFUSION LAYER-
dc.subjectFUEL-CELL-
dc.subjectMEDIA-
dc.titleOptimization of GDLs for high-performance PEMFC employing stainless steel bipolar plates-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2012.12.061-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.38, no.14, pp.6249 - 6260-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume38-
dc.citation.number14-
dc.citation.startPage6249-
dc.citation.endPage6260-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000319232500091-
dc.identifier.scopusid2-s2.0-84876701234-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS-DIFFUSION LAYER-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusMEDIA-
dc.subject.keywordAuthorProton exchange membrane fuel cells-
dc.subject.keywordAuthorStainless-steel bipolar plate-
dc.subject.keywordAuthorGas diffusion layer-
dc.subject.keywordAuthorPolytetraflouroethylene-
dc.subject.keywordAuthorOperating conditions-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE