Full metadata record

DC Field Value Language
dc.contributor.authorLee, Byoung-Sun-
dc.contributor.authorSon, Seoung-Bum-
dc.contributor.authorSeo, Jong-Hyun-
dc.contributor.authorPark, Kyu-Min-
dc.contributor.authorLee, Geunsung-
dc.contributor.authorLee, Se-Hee-
dc.contributor.authorOh, Kyu Hwan-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorYu, Woong-Ryeol-
dc.date.accessioned2024-01-20T12:32:57Z-
dc.date.available2024-01-20T12:32:57Z-
dc.date.created2022-01-25-
dc.date.issued2013-04-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128173-
dc.description.abstractThis paper reports on a simple and effective method for improving the electrochemical performance of silicon nanoparticle-core/carbon-shell (Si-core/C-shell) nanofibers. Instead of increasing the encapsulation amount of Si nanoparticles, additional conductive paths between the Si nanoparticles were formed by incorporating a small percentage of multi-walled carbon nanotubes (MWNTs) (e. g., 5 wt% with respect to Si) into the Si nanoparticle core. The electrical conductivity of a single Si-core/C-shell nanofiber was measured by a four-point probe using four nano-manipulators, which showed a more than five times increase according to MWNT addition. A galvanostatic charge-discharge test demonstrated that a small amount of MWNTs greatly improved the electrochemical performance of the Si-core/C-shell nanofibers (e. g., a 25.1% increase in the Li-ion storage capability) due to the enhanced participation of Si through the additional conductive paths formed between the Si nanoparticles.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleFacile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers-
dc.typeArticle-
dc.identifier.doi10.1039/c3nr00982c-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE, v.5, no.11, pp.4790 - 4796-
dc.citation.titleNANOSCALE-
dc.citation.volume5-
dc.citation.number11-
dc.citation.startPage4790-
dc.citation.endPage4796-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000319008700030-
dc.identifier.scopusid2-s2.0-84878127298-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERY-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusCOMPOSITE ANODES-
dc.subject.keywordPlusCOATED SILICON-
dc.subject.keywordPlusNEGATIVE ELECTRODE-
dc.subject.keywordPlusBINDER-FREE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusSTORAGE-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE