Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Byoung-Sun | - |
dc.contributor.author | Son, Seoung-Bum | - |
dc.contributor.author | Seo, Jong-Hyun | - |
dc.contributor.author | Park, Kyu-Min | - |
dc.contributor.author | Lee, Geunsung | - |
dc.contributor.author | Lee, Se-Hee | - |
dc.contributor.author | Oh, Kyu Hwan | - |
dc.contributor.author | Ahn, Jae-Pyoung | - |
dc.contributor.author | Yu, Woong-Ryeol | - |
dc.date.accessioned | 2024-01-20T12:32:57Z | - |
dc.date.available | 2024-01-20T12:32:57Z | - |
dc.date.created | 2022-01-25 | - |
dc.date.issued | 2013-04 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/128173 | - |
dc.description.abstract | This paper reports on a simple and effective method for improving the electrochemical performance of silicon nanoparticle-core/carbon-shell (Si-core/C-shell) nanofibers. Instead of increasing the encapsulation amount of Si nanoparticles, additional conductive paths between the Si nanoparticles were formed by incorporating a small percentage of multi-walled carbon nanotubes (MWNTs) (e. g., 5 wt% with respect to Si) into the Si nanoparticle core. The electrical conductivity of a single Si-core/C-shell nanofiber was measured by a four-point probe using four nano-manipulators, which showed a more than five times increase according to MWNT addition. A galvanostatic charge-discharge test demonstrated that a small amount of MWNTs greatly improved the electrochemical performance of the Si-core/C-shell nanofibers (e. g., a 25.1% increase in the Li-ion storage capability) due to the enhanced participation of Si through the additional conductive paths formed between the Si nanoparticles. | - |
dc.language | English | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Facile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/c3nr00982c | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | NANOSCALE, v.5, no.11, pp.4790 - 4796 | - |
dc.citation.title | NANOSCALE | - |
dc.citation.volume | 5 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 4790 | - |
dc.citation.endPage | 4796 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000319008700030 | - |
dc.identifier.scopusid | 2-s2.0-84878127298 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | LITHIUM-ION BATTERY | - |
dc.subject.keywordPlus | ANODE MATERIAL | - |
dc.subject.keywordPlus | HIGH-CAPACITY | - |
dc.subject.keywordPlus | COMPOSITE ANODES | - |
dc.subject.keywordPlus | COATED SILICON | - |
dc.subject.keywordPlus | NEGATIVE ELECTRODE | - |
dc.subject.keywordPlus | BINDER-FREE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | NANOWIRES | - |
dc.subject.keywordPlus | STORAGE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.