Full metadata record

DC Field Value Language
dc.contributor.authorBergstrom, Rachel A.-
dc.contributor.authorChoi, Jee Hyun-
dc.contributor.authorManduca, Armando-
dc.contributor.authorShin, Hee-Sup-
dc.contributor.authorWorrell, Greg A.-
dc.contributor.authorHowe, Charles L.-
dc.date.accessioned2024-01-20T12:34:13Z-
dc.date.available2024-01-20T12:34:13Z-
dc.date.created2021-09-01-
dc.date.issued2013-03-21-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128235-
dc.description.abstractVisual scoring of murine EEG signals is time-consuming and subject to low inter-observer reproducibility. The Racine scale for behavioral seizure severity does not provide information about interictal or sub-clinical epileptiform activity. An automated algorithm for murine EEG analysis was developed using total signal variation and wavelet decomposition to identify spike, seizure, and other abnormal signal types in single-channel EEG collected from kainic acid-treated mice. The algorithm was validated on multi-channel EEG collected from gamma-butyrolacetone-treated mice experiencing absence seizures. The algorithm identified epileptiform activity with high fidelity compared to visual scoring, correctly classifying spikes and seizures with 99% accuracy and 91% precision. The algorithm correctly identifed a spike-wave discharge focus in an absence-type seizure recorded by 36 cortical electrodes. The algorithm provides a reliable and automated method for quantification of multiple classes of epileptiform activity within the murine EEG and is tunable to a variety of event types and seizure categories.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectTEMPORAL-LOBE EPILEPSY-
dc.subjectNEURAL-NETWORK-
dc.subjectSPIKE ACTIVITY-
dc.subjectLINE LENGTH-
dc.subjectKAINIC ACID-
dc.subjectONSET-
dc.subjectELECTROENCEPHALOGRAM-
dc.subjectPREDICTION-
dc.subjectDYNAMICS-
dc.subjectKAINATE-
dc.titleAutomated identification of multiple seizure-related and interictal epileptiform event types in the EEG of mice-
dc.typeArticle-
dc.identifier.doi10.1038/srep01483-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.3-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume3-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000316539800001-
dc.identifier.scopusid2-s2.0-84875789568-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTEMPORAL-LOBE EPILEPSY-
dc.subject.keywordPlusNEURAL-NETWORK-
dc.subject.keywordPlusSPIKE ACTIVITY-
dc.subject.keywordPlusLINE LENGTH-
dc.subject.keywordPlusKAINIC ACID-
dc.subject.keywordPlusONSET-
dc.subject.keywordPlusELECTROENCEPHALOGRAM-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusKAINATE-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE