Full metadata record

DC Field Value Language
dc.contributor.authorMa, J. W.-
dc.contributor.authorLee, W. J.-
dc.contributor.authorBae, J. M.-
dc.contributor.authorJeong, K. S.-
dc.contributor.authorKang, Y. S.-
dc.contributor.authorCho, M. -H.-
dc.contributor.authorSeo, J. H.-
dc.contributor.authorAhn, J. P.-
dc.contributor.authorChung, K. B.-
dc.contributor.authorSong, J. Y.-
dc.date.accessioned2024-01-20T13:00:55Z-
dc.date.available2024-01-20T13:00:55Z-
dc.date.created2021-09-01-
dc.date.issued2013-03-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128317-
dc.description.abstractThe Young's modulus and fracture strength of Si1-xGex nanowires (NWs) as a function of Ge concentration were measured from tensile stress measurements. The Young's modulus of the NWs decreased linearly with increasing Ge content. No evidence was found for a linear relationship between the fracture strength of the NWs and Ge content, which is closely related to the quantity of interstitial Ge atoms contained in the wire. However, by removing some of the interstitial Ge atoms through rapid thermal annealing, a linear relationship could be produced. The discrepancy in the reported strength of Si and Ge NWs between calculated and experimented results could be related to SiO2-x/Si interfacial defects that are found in Si1-xGex NWs. It was also possible to significantly decrease the number of interfacial defects in the NWs by incorporating a surface passivated Al2O3 layer, which resulted in a substantial increase in fracture strength.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectFIELD-EFFECT TRANSISTORS-
dc.subjectGERMANIUM NANOWIRES-
dc.subjectSILICON NANOWIRES-
dc.subjectSUPERLATTICES-
dc.subjectPERFORMANCE-
dc.subjectSTRENGTH-
dc.subjectHETEROSTRUCTURES-
dc.subjectOPTOELECTRONICS-
dc.subjectSPECTROSCOPY-
dc.subjectTEMPERATURE-
dc.titleEffects of Surface Chemical Structure on the Mechanical Properties of Si1-xGex Nanowires-
dc.typeArticle-
dc.identifier.doi10.1021/nl304485d-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.13, no.3, pp.1118 - 1125-
dc.citation.titleNANO LETTERS-
dc.citation.volume13-
dc.citation.number3-
dc.citation.startPage1118-
dc.citation.endPage1125-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000316243800040-
dc.identifier.scopusid2-s2.0-84874999696-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusGERMANIUM NANOWIRES-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusSUPERLATTICES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusOPTOELECTRONICS-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordAuthorSiGe-
dc.subject.keywordAuthornanowire-
dc.subject.keywordAuthormechanical-
dc.subject.keywordAuthorfracture-
dc.subject.keywordAuthordefect-
dc.subject.keywordAuthorpassivation-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE