Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in Lithium-ion secondary batteries

Authors
Kang, Hee-KookLee, Seong-RaeCho, Won IlCho, Byung Won
Issue Date
2013-02
Publisher
ROYAL SOC CHEMISTRY
Citation
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.15, no.5, pp.1569 - 1577
Abstract
A buffer-strengthened Si/Fe multilayer film, consisting of amorphous silicon layers and polycrystalline Fe layers, is investigated as the anode for Li-ion batteries. This film can achieve a stable cycle-life performance with a high capacity. Decreasing the thickness of the Fe layer can lead to a higher capacity, which is related to the fast transport of the Li ion, but the cyclic performance deteriorates with repeated cycling. In contrast, increasing the thickness of the Fe buffer layers and the number of deposit stacks improves the cycle life with high reversibility. Because of the strain in the Si layers suppressed by the primary multilayer structure, the long-term strength is preserved and the substantial fracture toughness is enhanced by the increasing numbers of effective grain boundaries and interfacial layers. In addition, we demonstrate that the Ti underlayer promotes the electrochemical properties in the Si/Fe multilayer for various Fe layer thicknesses because of the enhanced adhesion of the interfacial electrode and current collector. The mechanically optimized Si/Fe multilayer films can have superior cycle-life performances and higher capacities. Notably, the 16-bilayer deposited electrode exhibits an excellent capacity retention of similar to 95% with similar to 204 mAh g(-1) over 300 cycles at a 1 C rate.
Keywords
THIN-FILM ANODES; SI-M M; NEGATIVE ELECTRODES; AMORPHOUS-SILICON; HIGH-CAPACITY; ALLOY; NANOCOMPOSITES; DEPOSITION; COMPOSITE; STORAGE; THIN-FILM ANODES; SI-M M; NEGATIVE ELECTRODES; AMORPHOUS-SILICON; HIGH-CAPACITY; ALLOY; NANOCOMPOSITES; DEPOSITION; COMPOSITE; STORAGE; anode; lithium ion battery; Si-Fe composite; multilayer
ISSN
1463-9076
URI
https://pubs.kist.re.kr/handle/201004/128390
DOI
10.1039/c2cp42824e
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE