Full metadata record

DC Field Value Language
dc.contributor.authorPark, C.-S.-
dc.contributor.authorKim, D.-
dc.date.accessioned2024-01-20T13:02:26Z-
dc.date.available2024-01-20T13:02:26Z-
dc.date.created2021-09-02-
dc.date.issued2013-02-
dc.identifier.issn1226-4873-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128392-
dc.description.abstractTo generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.-
dc.languageKorean-
dc.subjectComputational costs-
dc.subjectComputational loads-
dc.subjectHumanoid robot-
dc.subjectLow computational loads-
dc.subjectObstacle shapes-
dc.subjectReal time-
dc.subjectUnknown environments-
dc.subjectWalking paths-
dc.subjectAnthropomorphic robots-
dc.subjectComputational efficiency-
dc.titleClassification of obstacle shape for generating walking path of humanoid robot-
dc.typeArticle-
dc.identifier.doi10.3795/KSME-A.2013.37.2.169-
dc.description.journalClass1-
dc.identifier.bibliographicCitationTransactions of the Korean Society of Mechanical Engineers, A, v.37, no.2, pp.169 - 176-
dc.citation.titleTransactions of the Korean Society of Mechanical Engineers, A-
dc.citation.volume37-
dc.citation.number2-
dc.citation.startPage169-
dc.citation.endPage176-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART001740494-
dc.identifier.scopusid2-s2.0-84874844479-
dc.type.docTypeArticle-
dc.subject.keywordPlusComputational costs-
dc.subject.keywordPlusComputational loads-
dc.subject.keywordPlusHumanoid robot-
dc.subject.keywordPlusLow computational loads-
dc.subject.keywordPlusObstacle shapes-
dc.subject.keywordPlusReal time-
dc.subject.keywordPlusUnknown environments-
dc.subject.keywordPlusWalking paths-
dc.subject.keywordPlusAnthropomorphic robots-
dc.subject.keywordPlusComputational efficiency-
dc.subject.keywordAuthor장애물인식-
dc.subject.keywordAuthor영역 분할-
dc.subject.keywordAuthor인간형 로봇-
dc.subject.keywordAuthor3차원 깊이 지도-
dc.subject.keywordAuthorObstacle Detection-
dc.subject.keywordAuthorRange Segmentation-
dc.subject.keywordAuthorHumanoid Robot-
dc.subject.keywordAuthor3D Depth Map-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE