Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jongseob-
dc.contributor.authorLee, Jung Hoon-
dc.contributor.authorHong, Ki-Ha-
dc.date.accessioned2024-01-20T13:04:21Z-
dc.date.available2024-01-20T13:04:21Z-
dc.date.created2021-09-01-
dc.date.issued2013-01-
dc.identifier.issn1948-7185-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128488-
dc.description.abstractWe investigate the electronic band structures of Ge/Si core-shell nanowires (CSNWs) and devise a way to realize the electron quantum well at Ge core atoms with first-principles calculations. We reveal that the electronic band engineering by the quantum confinement and the lattice strain can induce the type-I/II band alignment transition, and the resulting type-I band alignment generates the electron quantum well in Ge/Si CSNWs. We also find that the type-I/II transition in Ge/Si CSNWs is highly related to the direct to indirect band gap transition through the analysis of charge density and band structures. In terms of the quantum confinement, for [100] and [111] directional Ge/Si CSNWs, the type-I/II transition can be obtained by decreasing the diameters, whereas a [110] directional CSNW preserves the type-II band alignment even at diameters as small as 1 nm. By applying a compressive strain on [110] CSNWs, the type-I band alignment can be formed. Our results suggest that Ge/Si CSNWs can have the type-I band alignment characteristics by the band structure engineering, which enables both n-type and p-type quantum-well transistors to be fabricated using Ge/Si CSNWs for high-speed logic applications.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleA Pathway to Type-I Band Alignment in Ge/Si Core-Shell Nanowires-
dc.typeArticle-
dc.identifier.doi10.1021/jz301975v-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry Letters, v.4, no.1, pp.121 - 126-
dc.citation.titleThe Journal of Physical Chemistry Letters-
dc.citation.volume4-
dc.citation.number1-
dc.citation.startPage121-
dc.citation.endPage126-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000313142000036-
dc.identifier.scopusid2-s2.0-84872172657-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusCHANNEL-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusMOSFETS-
dc.subject.keywordAuthortype-I/II transition-
dc.subject.keywordAuthorquantum well-
dc.subject.keywordAuthorquantum confinement-
dc.subject.keywordAuthorstrain-
dc.subject.keywordAuthordensity functional theory-
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE