Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jongseob | - |
dc.contributor.author | Lee, Jung Hoon | - |
dc.contributor.author | Hong, Ki-Ha | - |
dc.date.accessioned | 2024-01-20T13:04:21Z | - |
dc.date.available | 2024-01-20T13:04:21Z | - |
dc.date.created | 2021-09-01 | - |
dc.date.issued | 2013-01 | - |
dc.identifier.issn | 1948-7185 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/128488 | - |
dc.description.abstract | We investigate the electronic band structures of Ge/Si core-shell nanowires (CSNWs) and devise a way to realize the electron quantum well at Ge core atoms with first-principles calculations. We reveal that the electronic band engineering by the quantum confinement and the lattice strain can induce the type-I/II band alignment transition, and the resulting type-I band alignment generates the electron quantum well in Ge/Si CSNWs. We also find that the type-I/II transition in Ge/Si CSNWs is highly related to the direct to indirect band gap transition through the analysis of charge density and band structures. In terms of the quantum confinement, for [100] and [111] directional Ge/Si CSNWs, the type-I/II transition can be obtained by decreasing the diameters, whereas a [110] directional CSNW preserves the type-II band alignment even at diameters as small as 1 nm. By applying a compressive strain on [110] CSNWs, the type-I band alignment can be formed. Our results suggest that Ge/Si CSNWs can have the type-I band alignment characteristics by the band structure engineering, which enables both n-type and p-type quantum-well transistors to be fabricated using Ge/Si CSNWs for high-speed logic applications. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | A Pathway to Type-I Band Alignment in Ge/Si Core-Shell Nanowires | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/jz301975v | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | The Journal of Physical Chemistry Letters, v.4, no.1, pp.121 - 126 | - |
dc.citation.title | The Journal of Physical Chemistry Letters | - |
dc.citation.volume | 4 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 121 | - |
dc.citation.endPage | 126 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000313142000036 | - |
dc.identifier.scopusid | 2-s2.0-84872172657 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SILICON NANOWIRES | - |
dc.subject.keywordPlus | TRANSISTORS | - |
dc.subject.keywordPlus | CHANNEL | - |
dc.subject.keywordPlus | HETEROSTRUCTURES | - |
dc.subject.keywordPlus | MOSFETS | - |
dc.subject.keywordAuthor | type-I/II transition | - |
dc.subject.keywordAuthor | quantum well | - |
dc.subject.keywordAuthor | quantum confinement | - |
dc.subject.keywordAuthor | strain | - |
dc.subject.keywordAuthor | density functional theory | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.