Full metadata record

DC Field Value Language
dc.contributor.authorKim, Eungyeong-
dc.contributor.authorLee, Seok-
dc.contributor.authorKim, Jae Hun-
dc.contributor.authorKim, Chulki-
dc.contributor.authorByun, Young Tae-
dc.contributor.authorKim, Hyung Seok-
dc.contributor.authorLee, Taikjin-
dc.date.accessioned2024-01-20T13:31:26Z-
dc.date.available2024-01-20T13:31:26Z-
dc.date.created2021-09-05-
dc.date.issued2012-12-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128588-
dc.description.abstractThis paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals.-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectELECTRONIC NOSE-
dc.subjectDISCRIMINATION-
dc.subjectPERFORMANCE-
dc.subjectAIR-
dc.titlePattern Recognition for Selective Odor Detection with Gas Sensor Arrays-
dc.typeArticle-
dc.identifier.doi10.3390/s121216262-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSENSORS, v.12, no.12, pp.16262 - 16273-
dc.citation.titleSENSORS-
dc.citation.volume12-
dc.citation.number12-
dc.citation.startPage16262-
dc.citation.endPage16273-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000312607500016-
dc.identifier.scopusid2-s2.0-84871691490-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRONIC NOSE-
dc.subject.keywordPlusDISCRIMINATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusAIR-
dc.subject.keywordAuthorgas sensor array-
dc.subject.keywordAuthorodor monitoring-
dc.subject.keywordAuthorpattern recognition-
dc.subject.keywordAuthorartificial neural networks (ANN)-
dc.subject.keywordAuthorgenetic algorithm (GA)-
dc.subject.keywordAuthorneural-genetic classification algorithm (NGCA)-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE