Multiplexed Detection of mRNA Using Porosity-Tuned Hydrogel Microparticles
- Authors
- Choi, Nak Won; Kim, Jungwook; Chapin, Stephen C.; Thao Duong; Donohue, Elaine; Pandey, Pramod; Broom, Wendy; Hill, W. Adam; Doyle, Patrick S.
- Issue Date
- 2012-11-06
- Publisher
- AMER CHEMICAL SOC
- Citation
- ANALYTICAL CHEMISTRY, v.84, no.21, pp.9370 - 9378
- Abstract
- Transcriptional profiling, which is directly or indirectly associated with expressed protein levels, has been used in various applications including clinical prognosis and pharmaceutical investigation of drug activities. Although the widely used reverse transcription polymerase chain reaction (RT-PCR) allows for the quantification of absolute amounts of mRNA (mRNA) from inputs as small as a single cell, it is an indirect detection method that requires the amplification of cDNA copies of target mRNAs. Here, we report the quantification of unmodified full-length transcripts, using poly(ethylene) glycol diacrylate (PEGDA) hydrogel microparticles synthesized via stop flow lithography (SFL). We show that PEG600 serves as an effective porogen to allow for the capture of large (similar to 1000-3700 nt long) mRNAs. Our relatively simple hydrogel-based mRNA detection scheme uses a multibiotinylated universal label probe and provides assay performance (limit of detection of similar to 6 amol of an in model target) comparable to an existing commercial bead based technology that uses branched DNA (bDNA) signal amplification. We also demonstrate a 3-plex mRNA detection, without cross-reactivity, using shape encoded "intraplex" hydrogel microparticles. Our ability to tune the porosity of encoded hydrogel microparticles expands the utility of this platform to now quantify biomacromolecules ranging in size from large mRNAs to small miRNAs.
- Keywords
- MICROFLUIDIC CHANNELS; NUCLEASE PROTECTION; PROTEIN-DETECTION; HIGH-THROUGHPUT; QUANTIFICATION; ASSAY; PARTICLES; BLOOD; ARRAYS; CELLS; MICROFLUIDIC CHANNELS; NUCLEASE PROTECTION; PROTEIN-DETECTION; HIGH-THROUGHPUT; QUANTIFICATION; ASSAY; PARTICLES; BLOOD; ARRAYS; CELLS; mRNA detection; hydrogel microparticle; stop flow lithography
- ISSN
- 0003-2700
- URI
- https://pubs.kist.re.kr/handle/201004/128659
- DOI
- 10.1021/ac302128u
- Appears in Collections:
- KIST Article > 2012
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.