Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Hee Yeon | - |
dc.contributor.author | Kang, Nam Su | - |
dc.contributor.author | Hong, Jae-Min | - |
dc.contributor.author | Song, Yong-Won | - |
dc.contributor.author | Kim, Tae Whan | - |
dc.contributor.author | Lim, Jung Ah | - |
dc.date.accessioned | 2024-01-20T13:33:49Z | - |
dc.date.available | 2024-01-20T13:33:49Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2012-11 | - |
dc.identifier.issn | 1566-1199 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/128705 | - |
dc.description.abstract | We demonstrated a facile method for the fabrication of bilayer polymer solar cells with a controlled heterojunction structure via simple polymer blends. The spontaneous phase separation of poly(3-hexylthiophene)/polyethylene glycol blends provides a bumpy electron-donor layer with characteristic circular depressions. The diameter and depth of the circular depressions can be controlled by varying the PEG content of the blend. The deposition of [6,6]-phenyl-C61-butyric acid methyl ester as an electron-acceptor layer then creates an interpenetrating donor-acceptor interface for bilayer heterojunction polymer solar cells. The bumpy morphology of the interface results in a significant enhancement in the power conversion efficiency over that of the bilayer polymer solar cells with a typical planar interface, which is mainly due to an increase of photocurrent. An estimation of the field-dependent possibility of charge separation indicates that charge extraction is more efficient than charge recombination in the bilayer devices and the increase in the interfacial area of solar cells with a bumpy-interface leads to generate more electron-hole pairs at the interface. (C) 2012 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.title | Efficient bilayer heterojunction polymer solar cells with bumpy donor-acceptor interface formed by facile polymer blend | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.orgel.2012.07.040 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ORGANIC ELECTRONICS, v.13, no.11, pp.2688 - 2695 | - |
dc.citation.title | ORGANIC ELECTRONICS | - |
dc.citation.volume | 13 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 2688 | - |
dc.citation.endPage | 2695 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000311177700069 | - |
dc.identifier.scopusid | 2-s2.0-84865555765 | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | THIN-FILM TRANSISTORS | - |
dc.subject.keywordPlus | PHOTOVOLTAIC DEVICES | - |
dc.subject.keywordPlus | PHASE-SEPARATION | - |
dc.subject.keywordPlus | POLY(3-HEXYLTHIOPHENE) | - |
dc.subject.keywordPlus | CRYSTALLIZATION | - |
dc.subject.keywordPlus | LITHOGRAPHY | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | MORPHOLOGY | - |
dc.subject.keywordPlus | LAYERS | - |
dc.subject.keywordAuthor | Bilayer polymer solar cells | - |
dc.subject.keywordAuthor | Nanostructure | - |
dc.subject.keywordAuthor | Polymer blend | - |
dc.subject.keywordAuthor | Phase separation | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.