Full metadata record

DC Field Value Language
dc.contributor.authorYang, Hee Yeon-
dc.contributor.authorKang, Nam Su-
dc.contributor.authorHong, Jae-Min-
dc.contributor.authorSong, Yong-Won-
dc.contributor.authorKim, Tae Whan-
dc.contributor.authorLim, Jung Ah-
dc.date.accessioned2024-01-20T13:33:49Z-
dc.date.available2024-01-20T13:33:49Z-
dc.date.created2021-09-05-
dc.date.issued2012-11-
dc.identifier.issn1566-1199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128705-
dc.description.abstractWe demonstrated a facile method for the fabrication of bilayer polymer solar cells with a controlled heterojunction structure via simple polymer blends. The spontaneous phase separation of poly(3-hexylthiophene)/polyethylene glycol blends provides a bumpy electron-donor layer with characteristic circular depressions. The diameter and depth of the circular depressions can be controlled by varying the PEG content of the blend. The deposition of [6,6]-phenyl-C61-butyric acid methyl ester as an electron-acceptor layer then creates an interpenetrating donor-acceptor interface for bilayer heterojunction polymer solar cells. The bumpy morphology of the interface results in a significant enhancement in the power conversion efficiency over that of the bilayer polymer solar cells with a typical planar interface, which is mainly due to an increase of photocurrent. An estimation of the field-dependent possibility of charge separation indicates that charge extraction is more efficient than charge recombination in the bilayer devices and the increase in the interfacial area of solar cells with a bumpy-interface leads to generate more electron-hole pairs at the interface. (C) 2012 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleEfficient bilayer heterojunction polymer solar cells with bumpy donor-acceptor interface formed by facile polymer blend-
dc.typeArticle-
dc.identifier.doi10.1016/j.orgel.2012.07.040-
dc.description.journalClass1-
dc.identifier.bibliographicCitationORGANIC ELECTRONICS, v.13, no.11, pp.2688 - 2695-
dc.citation.titleORGANIC ELECTRONICS-
dc.citation.volume13-
dc.citation.number11-
dc.citation.startPage2688-
dc.citation.endPage2695-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000311177700069-
dc.identifier.scopusid2-s2.0-84865555765-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusPHOTOVOLTAIC DEVICES-
dc.subject.keywordPlusPHASE-SEPARATION-
dc.subject.keywordPlusPOLY(3-HEXYLTHIOPHENE)-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusLITHOGRAPHY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusLAYERS-
dc.subject.keywordAuthorBilayer polymer solar cells-
dc.subject.keywordAuthorNanostructure-
dc.subject.keywordAuthorPolymer blend-
dc.subject.keywordAuthorPhase separation-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE