Full metadata record

DC Field Value Language
dc.contributor.authorHoang Viet Phuc Nguyen-
dc.contributor.authorSong, Shin Ae-
dc.contributor.authorSeo, Dongho-
dc.contributor.authorPark, Dong-Nyeok-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorOh, In-Hwan-
dc.contributor.authorYoon, Sung Pil-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorKim, Jinsoo-
dc.date.accessioned2024-01-20T13:35:00Z-
dc.date.available2024-01-20T13:35:00Z-
dc.date.created2021-09-05-
dc.date.issued2012-10-15-
dc.identifier.issn0254-0584-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128764-
dc.description.abstractNi-(3,5) wt.% Al-(3-10) wt.% Cr alloys suitable for use as an anode material for molten carbonate fuel cells (MCFCs) were prepared by a solid-gas-solid diffusion method. The creep resistances and sintering resistances of the prepared Ni-Al-Cr alloy samples evaluated in the creep test system were significantly improved with increasing Al and Cr concentration. The Ni-5 wt.% Al-10 wt.% Cr alloy showed the best creep resistance with a creep strain of 1.7% among as-prepared samples. To determine the electro-chemical performance of the Ni-Al-Cr alloy anode, a single cell test was carried out. The cell performances of all the Ni-Al-Cr alloy anodes were above 0.8 V at 150 mA cm(-2) for 1000 h of operation. It was also verified that the addition of Cr to Ni-Al enhances the ductility of the alloy and thus reduces microcrack formation in the Ni-Al-Cr anode during cell operation. Therefore, it can be concluded that the Ni-Al-Cr alloy anode is a good candidate anode material for MCFCs. (c) 2012 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectNICKEL ALUMINIDE-
dc.subjectCRACK-GROWTH-
dc.subjectPERFORMANCE-
dc.subjectOPERATION-
dc.subjectTEMPERATURE-
dc.subjectSTABILITY-
dc.subjectMECHANISM-
dc.subjectELECTRODE-
dc.subjectBEHAVIOR-
dc.subjectCATHODE-
dc.titleFabrication of Ni-Al-Cr alloy anode for molten carbonate fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.matchemphys.2012.08.018-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS CHEMISTRY AND PHYSICS, v.136, no.2-3, pp.910 - 916-
dc.citation.titleMATERIALS CHEMISTRY AND PHYSICS-
dc.citation.volume136-
dc.citation.number2-3-
dc.citation.startPage910-
dc.citation.endPage916-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000311865400089-
dc.identifier.scopusid2-s2.0-84867403358-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusNICKEL ALUMINIDE-
dc.subject.keywordPlusCRACK-GROWTH-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusOPERATION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordAuthorCreep-
dc.subject.keywordAuthorDuctility-
dc.subject.keywordAuthorMechanical properties-
dc.subject.keywordAuthorElectrochemical properties-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE