Preferred crystallographic pitting corrosion of pure magnesium in Hanks' solution
- Authors
- Han, Gilsoo; Lee, Ji-Young; Kim, Yu-Chan; Park, Ji Hee; Kim, Dong-Ik; Han, Hyung-Seop; Yang, Seok-Jo; Seok, Hyun-Kwang
- Issue Date
- 2012-10
- Publisher
- PERGAMON-ELSEVIER SCIENCE LTD
- Citation
- CORROSION SCIENCE, v.63, pp.316 - 322
- Abstract
- We examined the corrosion behavior of Mg in Hanks' solution to determine the potential of a biodegradable pure Mg implant. Abrupt corrosion, initiated by Fe impurity, was observed in the latter stage of experimentation in the form of preferred crystallographic pitting (PCP) propagating along the (0001) basal plane in the grain. Herein, we report the mechanism behind PCP corrosion of Mg and evaluate potential solutions to suppress PCP corrosion. In particular, the addition of Mn inhibits PCP initiation by converting Fe impurities to Fe-Mn compounds, while refining the grain size by extrusion reduces PCP propagation. (C) 2012 Elsevier Ltd. All rights reserved.
- Keywords
- BIODEGRADABLE IMPLANTS; ORTHOPEDIC IMPLANTS; ALLOYS; BEHAVIOR; BONE; MICROSTRUCTURE; BIODEGRADABLE IMPLANTS; ORTHOPEDIC IMPLANTS; ALLOYS; BEHAVIOR; BONE; MICROSTRUCTURE; Magnesium; SEM; EPMA; Pitting corrosion
- ISSN
- 0010-938X
- URI
- https://pubs.kist.re.kr/handle/201004/128813
- DOI
- 10.1016/j.corsci.2012.06.011
- Appears in Collections:
- KIST Article > 2012
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.