Full metadata record

DC Field Value Language
dc.contributor.authorYoo, Sang Wook-
dc.contributor.authorSeong, Joon-Kyung-
dc.contributor.authorSung, Min-Hyuk-
dc.contributor.authorShin, Sung Yong-
dc.contributor.authorCohen, Elaine-
dc.date.accessioned2024-01-20T14:01:13Z-
dc.date.available2024-01-20T14:01:13Z-
dc.date.created2021-09-05-
dc.date.issued2012-10-
dc.identifier.issn1077-2626-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128822-
dc.description.abstractThis paper addresses the problem of computing the geodesic distance map from a given set of source vertices to all other vertices on a surface mesh using an anisotropic distance metric. Formulating this problem as an equivalent control theoretic problem with Hamilton-Jacobi-Bellman partial differential equations, we present a framework for computing an anisotropic geodesic map using a curvature-based speed function. An ordered upwind method (OUM)-based solver for these equations is available for unstructured planar meshes. We adopt this OUM-based solver for surface meshes and present a triangulation-invariant method for the solver. Our basic idea is to explore proximity among the vertices on a surface while locally following the characteristic direction at each vertex. We also propose two speed functions based on classical curvature tensors and show that the resulting anisotropic geodesic maps reflect surface geometry well through several experiments, including isocontour generation, offset curve computation, medial axis extraction, and ridge/valley curve extraction. Our approach facilitates surface analysis and processing by defining speed functions in an application-dependent manner.-
dc.languageEnglish-
dc.publisherIEEE COMPUTER SOC-
dc.subjectHAMILTON-JACOBI EQUATIONS-
dc.subjectEFFICIENT ALGORITHMS-
dc.titleA Triangulation-Invariant Method for Anisotropic Geodesic Map Computation on Surface Meshes-
dc.typeArticle-
dc.identifier.doi10.1109/TVCG.2012.29-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, v.18, no.10, pp.1664 - 1677-
dc.citation.titleIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS-
dc.citation.volume18-
dc.citation.number10-
dc.citation.startPage1664-
dc.citation.endPage1677-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000307298800008-
dc.identifier.scopusid2-s2.0-84865373945-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHAMILTON-JACOBI EQUATIONS-
dc.subject.keywordPlusEFFICIENT ALGORITHMS-
dc.subject.keywordAuthorGeodesic-
dc.subject.keywordAuthoranisotropy-
dc.subject.keywordAuthorsurface mesh-
dc.subject.keywordAuthorHamilton-Jacobi-Bellman-
dc.subject.keywordAuthorcurvature minimization-
dc.subject.keywordAuthorcurvature variation minimization-
dc.subject.keywordAuthorshape analysis-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE