Full metadata record

DC Field Value Language
dc.contributor.authorKo, Won-Seok-
dc.contributor.authorJeon, Jong Bae-
dc.contributor.authorShim, Jae-Hyeok-
dc.contributor.authorLee, Byeong-Joo-
dc.date.accessioned2024-01-20T14:03:24Z-
dc.date.available2024-01-20T14:03:24Z-
dc.date.created2021-09-05-
dc.date.issued2012-09-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128936-
dc.description.abstractHydrogen embrittlement in metals is a challenging technical issue in the proper use of hydrogen energy. Despite extensive investigations, the underlying mechanism has not been clearly understood. Using atomistic simulations, we focused on the hydrogen embrittlement in vanadium-based hydrogen separation membrane. We found that, contrary to the conventional reasoning for the embrittlement of vanadium, the hydrogen-enhanced localized plasticity (HELP) mechanism is the most promising mechanism. Hydrogen enhances the nucleation of dislocations near the crack tip, which leads to the localized plasticity, and eventually enhances the void nucleation that leads to the failure. Those results provide an insight into the complex atomic scale process of hydrogen embrittlement in vanadium and also help us design a new alloy for hydrogen separation membranes. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectASSISTED CRACKING-
dc.subjectNICKEL-ALLOYS-
dc.subjectH SYSTEM-
dc.subjectFRACTURE-
dc.subjectMETALS-
dc.subjectDEFORMATION-
dc.subjectDISLOCATION-
dc.subjectNUCLEATION-
dc.subjectDIFFUSION-
dc.subjectDEFECTS-
dc.titleOrigin of hydrogen embrittlement in vanadium-based hydrogen separation membranes-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2012.06.075-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.37, no.18, pp.13583 - 13593-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume37-
dc.citation.number18-
dc.citation.startPage13583-
dc.citation.endPage13593-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000309043200041-
dc.identifier.scopusid2-s2.0-84865519486-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusASSISTED CRACKING-
dc.subject.keywordPlusNICKEL-ALLOYS-
dc.subject.keywordPlusH SYSTEM-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusDISLOCATION-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusDEFECTS-
dc.subject.keywordAuthorHydrogen separation membrane-
dc.subject.keywordAuthorHydrogen embrittlement-
dc.subject.keywordAuthorVanadium-hydrogen-
dc.subject.keywordAuthorAtomistic simulation-
dc.subject.keywordAuthorModified embedded-atom method-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE