Full metadata record

DC Field Value Language
dc.contributor.authorJeon, S.W.-
dc.contributor.authorLee, K.J.-
dc.contributor.authorCho, Y.H.-
dc.contributor.authorMoon, D.J.-
dc.date.accessioned2024-01-20T14:03:50Z-
dc.date.available2024-01-20T14:03:50Z-
dc.date.created2021-08-31-
dc.date.issued2012-09-
dc.identifier.issn1226-4881-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128957-
dc.description.abstractA numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased. ? 2012 The Korean Society of Mechanical Engineers.-
dc.languageKorean-
dc.publisher대한기계학회-
dc.title마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구-
dc.title.alternativeNumerical study of heat and mass transfer characteristics in microchannel steam methane reforming reactor-
dc.typeArticle-
dc.identifier.doi10.3795/KSME-B.2012.36.9.885-
dc.description.journalClass1-
dc.identifier.bibliographicCitationTransactions of the KSME, B, v.36, no.9, pp.885 - 894-
dc.citation.titleTransactions of the KSME, B-
dc.citation.volume36-
dc.citation.number9-
dc.citation.startPage885-
dc.citation.endPage894-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART001688327-
dc.identifier.scopusid2-s2.0-84866406867-
dc.type.docTypeArticle-
dc.subject.keywordPlusCatalyst layers-
dc.subject.keywordPlusChannel sizes-
dc.subject.keywordPlusContact time-
dc.subject.keywordPlusCounter-flows-
dc.subject.keywordPlusHeat and mass transfer-
dc.subject.keywordPlusMethane combustion-
dc.subject.keywordPlusMethane reforming-
dc.subject.keywordPlusMicro channel reactors-
dc.subject.keywordPlusMole fraction-
dc.subject.keywordPlusNumerical studies-
dc.subject.keywordPlusPt-catalyzed-
dc.subject.keywordPlusCatalysis-
dc.subject.keywordPlusComputational fluid dynamics-
dc.subject.keywordPlusHeat transfer-
dc.subject.keywordPlusHydrogen production-
dc.subject.keywordPlusMass transfer-
dc.subject.keywordPlusMethane-
dc.subject.keywordPlusMicrochannels-
dc.subject.keywordPlusPlatinum-
dc.subject.keywordPlusReaction rates-
dc.subject.keywordPlusRhodium-
dc.subject.keywordPlusSteam reforming-
dc.subject.keywordPlusTemperature distribution-
dc.subject.keywordPlusSteam-
dc.subject.keywordPlusInsectivora-
dc.subject.keywordAuthorCFD-
dc.subject.keywordAuthorHydrogen productions-
dc.subject.keywordAuthorMicrochannel reactor-
dc.subject.keywordAuthorSteam methane reforming-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE