Full metadata record

DC Field Value Language
dc.contributor.authorChatterjee, Shahana-
dc.contributor.authorKim, Myung Jong-
dc.contributor.authorZakharov, Dmitri N.-
dc.contributor.authorKim, Seung Min-
dc.contributor.authorStach, Eric A.-
dc.contributor.authorMaruyama, Benji-
dc.contributor.authorSneddon, Larry G.-
dc.date.accessioned2024-01-20T14:04:16Z-
dc.date.available2024-01-20T14:04:16Z-
dc.date.created2021-09-04-
dc.date.issued2012-08-14-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128977-
dc.description.abstractMulti- and double-walled boron nitride nanotubes (BNNTs) have been synthesized with the aid of a floating nickel catalyst via the catalytic chemical vapor deposition (CCVD) of either the amine-borane borazine (B3N3H6) or the polyhedral-borane decaborane (B10H14) molecular precursors in ammonia atmospheres. Both sets of BNNTs were crystalline with highly ordered structures. The BNNTs grown at 1200 degrees C from borazine were mainly double-walled, with lengths up to 0.2 mu m and similar to 2 nm diameters. The BNNTs grown at 1200-1300 degrees C from decaborane were double- and multiwalled, with the double-walled nanotubes having similar to 2 nm inner diameters and the multiwalled nanotubes (similar to 10 walls) having similar to 4-5 nm inner diameters and similar to 12-14 nm outer diameters. BNNTs grown from decaborane at 1300 degrees C were longer, averaging similar to 0.6 mu m, whereas those grown at 1200 degrees C had average lengths of similar to 0.2 mu m. The BNNTs were characterized using scanning and transmission electron microscopies (SEM and TEM), and electron energy loss spectroscopy (EELS). The floating catalyst method provides a catalytic and potentially scalable route to BNNTs with low defect density from safe and commercially available precursor compounds.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectBISCYCLOPENTADIENYL METAL-COMPOUNDS-
dc.subjectCERAMIC CONVERSION REACTIONS-
dc.subjectYIELD POLYMERIC PRECURSOR-
dc.subjectWALLED CARBON NANOTUBES-
dc.subjectLOW-TEMPERATURE GROWTH-
dc.subjectATOMIC STRUCTURES-
dc.subjectBN NANOTUBES-
dc.subjectLARGE-SCALE-
dc.subjectPYROLYSIS-
dc.subjectMECHANISM-
dc.titleSyntheses of Boron Nitride Nanotubes from Borazine and Decaborane Molecular Precursors by Catalytic Chemical Vapor Deposition with a Floating Nickel Catalyst-
dc.typeArticle-
dc.identifier.doi10.1021/cm3006088-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.24, no.15, pp.2872 - 2879-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume24-
dc.citation.number15-
dc.citation.startPage2872-
dc.citation.endPage2879-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000307478400005-
dc.identifier.scopusid2-s2.0-84865111330-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusBISCYCLOPENTADIENYL METAL-COMPOUNDS-
dc.subject.keywordPlusCERAMIC CONVERSION REACTIONS-
dc.subject.keywordPlusYIELD POLYMERIC PRECURSOR-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusLOW-TEMPERATURE GROWTH-
dc.subject.keywordPlusATOMIC STRUCTURES-
dc.subject.keywordPlusBN NANOTUBES-
dc.subject.keywordPlusLARGE-SCALE-
dc.subject.keywordPlusPYROLYSIS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthorboron nitride nanotubes-
dc.subject.keywordAuthorchemical vapor deposition-
dc.subject.keywordAuthornickel-
dc.subject.keywordAuthorborazine-
dc.subject.keywordAuthordecaborane-
dc.subject.keywordAuthorfloating catalyst-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE