Full metadata record

DC Field Value Language
dc.contributor.authorFeng, Linqing-
dc.contributor.authorZhao, Ting-
dc.contributor.authorKim, Jinhyun-
dc.date.accessioned2024-01-20T14:32:45Z-
dc.date.available2024-01-20T14:32:45Z-
dc.date.created2022-01-10-
dc.date.issued2012-06-15-
dc.identifier.issn1367-4803-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/129144-
dc.description.abstractMotivation: A new technique, mammalian green fluorescence protein (GFP) reconstitution across synaptic partners (mGRASP), enables mapping mammalian synaptic connectivity with light microscopy. To characterize the locations and distribution of synapses in complex neuronal networks visualized by mGRASP, it is essential to detect mGRASP fluorescence signals with high accuracy. Results: We developed a fully automatic method for detecting mGRASP-labeled synapse puncta. By modeling each punctum as a Gaussian distribution, our method enables accurate detection even when puncta of varying size and shape partially overlap. The method consists of three stages: blob detection by global thresholding; blob separation by watershed; and punctum modeling by a variational Bayesian Gaussian mixture models. Extensive testing shows that the three-stage method improved detection accuracy markedly, and especially reduces under-segmentation. The method provides a goodness-of-fit score for each detected punctum, allowing efficient error detection. We applied this advantage to also develop an efficient interactive method for correcting errors.-
dc.languageEnglish-
dc.publisherOXFORD UNIV PRESS-
dc.subjectLIVE CELLS-
dc.subjectTRACKING-
dc.subjectMODELS-
dc.subject3D-
dc.subjectRECONSTRUCTION-
dc.subjectSEGMENTATION-
dc.subjectPARTICLES-
dc.subjectNUCLEI-
dc.titleImproved synapse detection for mGRASP-assisted brain connectivity mapping-
dc.typeArticle-
dc.identifier.doi10.1093/bioinformatics/bts221-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOINFORMATICS, v.28, no.12, pp.I25 - I31-
dc.citation.titleBIOINFORMATICS-
dc.citation.volume28-
dc.citation.number12-
dc.citation.startPageI25-
dc.citation.endPageI31-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000305419800004-
dc.identifier.scopusid2-s2.0-84863542265-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaMathematics-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusLIVE CELLS-
dc.subject.keywordPlusTRACKING-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlus3D-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusSEGMENTATION-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusNUCLEI-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE