Full metadata record

DC Field Value Language
dc.contributor.authorPark, Ok-Kyung-
dc.contributor.authorHahm, Myung Gwan-
dc.contributor.authorLee, Sungho-
dc.contributor.authorJoh, Han-Ik-
dc.contributor.authorNa, Seok-In-
dc.contributor.authorVajtai, Robert-
dc.contributor.authorLee, Joong Hee-
dc.contributor.authorKu, Bon-Cheol-
dc.contributor.authorAjayan, Pulickel M.-
dc.date.accessioned2024-01-20T15:03:06Z-
dc.date.available2024-01-20T15:03:06Z-
dc.date.created2021-09-05-
dc.date.issued2012-04-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/129368-
dc.description.abstractHighly conductive reduced graphene oxide (GO) polymer nano composites are synthesized by a well-organized in situ thermochemical synthesis technique. The surface functionalization of GO was carried out with aryl diazonium salt including 4-iodoaniline to form phenyl functionalized GO (I-Ph-GO). The thermochemically developed reduced, GO (R-I-Ph-GO) has five times higher electrical conductivity (42 000 S/m) than typical reduced GO (R-GO). We also demonstrate a R-I-Ph-GO/polyimide (PI) composites having more than 10(4) times higher conductivity (similar to 1 S/m) compared to a R-GO/PI composites. The electrical resistances of PI composites with R-I-Ph-GO were dramatically dropped under similar to 3% tensile strain. The R-I-Ph-GO/PI composites with electrically sensitive response caused by mechanical strain are expected to have broad implications for nanoelectromechanical systems.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectREDUCTION-
dc.subjectFUNCTIONALIZATION-
dc.subjectGRAPHITE-
dc.titleIn Situ Synthesis of Thermochemically Reduced Graphene Oxide Conducting Nanocomposites-
dc.typeArticle-
dc.identifier.doi10.1021/nl203803d-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.12, no.4, pp.1789 - 1793-
dc.citation.titleNANO LETTERS-
dc.citation.volume12-
dc.citation.number4-
dc.citation.startPage1789-
dc.citation.endPage1793-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000302524600009-
dc.identifier.scopusid2-s2.0-84859715474-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusFUNCTIONALIZATION-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorthermochemical reduction-
dc.subject.keywordAuthorelectrical conductivity-
dc.subject.keywordAuthorpolyimide composites-
dc.subject.keywordAuthornanoelectromechanical sensor-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE