Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Veriansyah, Bambang | - |
dc.contributor.author | Han, Jae Young | - |
dc.contributor.author | Kim, Seok Ki | - |
dc.contributor.author | Hong, Seung-Ah | - |
dc.contributor.author | Kim, Young Jun | - |
dc.contributor.author | Lim, Jong Sung | - |
dc.contributor.author | Shu, Young-Wong | - |
dc.contributor.author | Oh, Seong-Geun | - |
dc.contributor.author | Kim, Jaehoon | - |
dc.date.accessioned | 2024-01-20T15:04:10Z | - |
dc.date.available | 2024-01-20T15:04:10Z | - |
dc.date.created | 2021-09-04 | - |
dc.date.issued | 2012-04 | - |
dc.identifier.issn | 0016-2361 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/129413 | - |
dc.description.abstract | The effects of various supported catalysts on the hydroprocessing of soybean oil were studied. Several parameters were taken into account when evaluating the hydroprocessed products, including the conversion, selectivity (naphtha, kero/jet, and diesel), free-fatty acid content, oxygen removal, and saturation of double bonds. The hydroprocessing conversion order was found to be sulfided NiMo/gamma-Al2O3 (92.9%) > 4.29 wt.% Pd/gamma-Al2O3 (91.9%) > sulfided CoMo/gamma-Al2O3 (78.9%) > 57.6 wt.% Ni/SiO2-Al2O3 (60.8%) > 4.95 wt.% Pt/gamma-Al2O3 (50.8%) > 3.06 wt.% Ru/Al2O3 (39.7%) at a catalyst/oil weight ratio of 0.044. The most abundant composition in the liquid product was straight chain n-C-17 and n-C-15 alkanes when the Ni or Pd catalysts were used. Enhanced isomerization and cracking reaction activity on the CoMo catalyst may produce lighter and isomerized hydrocarbons. By combining gas-phase and liquid product analyses, decarboxylation was a dominant reaction pathway when the Pd catalyst was used, while hydrodeoxygenation was favored when the NiMo or CoMo catalyst was used. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.subject | VEGETABLE-OILS | - |
dc.subject | CO | - |
dc.subject | REFINERIES | - |
dc.subject | OXIDATION | - |
dc.subject | FUEL | - |
dc.title | Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.fuel.2011.10.057 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | FUEL, v.94, no.1, pp.578 - 585 | - |
dc.citation.title | FUEL | - |
dc.citation.volume | 94 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 578 | - |
dc.citation.endPage | 585 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000300497300071 | - |
dc.identifier.scopusid | 2-s2.0-84856731872 | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | VEGETABLE-OILS | - |
dc.subject.keywordPlus | CO | - |
dc.subject.keywordPlus | REFINERIES | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordPlus | FUEL | - |
dc.subject.keywordAuthor | Hydroprocessing | - |
dc.subject.keywordAuthor | Renewable diesel | - |
dc.subject.keywordAuthor | Vegetable oil | - |
dc.subject.keywordAuthor | Catalysts | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.