Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khan, Ozair Idris | - |
dc.contributor.author | Farooq, Faisal | - |
dc.contributor.author | Akram, Faraz | - |
dc.contributor.author | Choi, Mun-Taek | - |
dc.contributor.author | Han, Seung Moo | - |
dc.contributor.author | Kim, Tae-Seong | - |
dc.date.accessioned | 2024-01-20T15:04:52Z | - |
dc.date.available | 2024-01-20T15:04:52Z | - |
dc.date.created | 2022-01-25 | - |
dc.date.issued | 2012-03 | - |
dc.identifier.issn | 0140-0118 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/129438 | - |
dc.description.abstract | P300 is a positive event-related potential used by P300-brain computer interfaces (BCIs) as a means of communication with external devices. One of the main requirements of any P300-based BCI is accuracy and time efficiency for P300 extraction and detection. Among many attempted techniques, independent component analysis (ICA) is currently the most popular P300 extraction technique. However, since ICA extracts multiple independent components (ICs), its use requires careful selection of ICs containing P300 responses, which limits the number of channels available for computational efficiency. Here, we propose a novel procedure for P300 extraction and detection using constrained independent component analysis (cICA) through which we can directly extract only P300-relevant ICs. We tested our procedure on two standard datasets collected from healthy and disabled subjects. We tested our procedure on these datasets and compared their respective performances with a conventional ICA-based procedure. Our results demonstrate that the cICA-based method was more reliable and less computationally expensive, and was able to achieve 97 and 91.6% accuracy in P300 detection from healthy and disabled subjects, respectively. In recognizing target characters and images, our approach achieved 95 and 90.25% success in healthy and disabled individuals, whereas use of ICA only achieved 83 and 72.25%, respectively. In terms of information transfer rate, our results indicate that the ICA-based procedure optimally performs with a limited number of channels (typically three), but with a higher number of available channels (>3), its performance deteriorates and the cICA-based one performs better. | - |
dc.language | English | - |
dc.publisher | SPRINGER HEIDELBERG | - |
dc.title | Robust extraction of P300 using constrained ICA for BCI applications | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s11517-012-0861-4 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, v.50, no.3, pp.231 - 241 | - |
dc.citation.title | MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING | - |
dc.citation.volume | 50 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 231 | - |
dc.citation.endPage | 241 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000302263100004 | - |
dc.identifier.scopusid | 2-s2.0-84862817582 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Engineering, Biomedical | - |
dc.relation.journalWebOfScienceCategory | Mathematical & Computational Biology | - |
dc.relation.journalWebOfScienceCategory | Medical Informatics | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Mathematical & Computational Biology | - |
dc.relation.journalResearchArea | Medical Informatics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | INDEPENDENT COMPONENT ANALYSIS | - |
dc.subject.keywordPlus | MENTAL PROSTHESIS | - |
dc.subject.keywordPlus | BRAIN | - |
dc.subject.keywordPlus | DISCRIMINATION | - |
dc.subject.keywordPlus | COMMUNICATION | - |
dc.subject.keywordPlus | MOVEMENT | - |
dc.subject.keywordAuthor | Brain computer interface | - |
dc.subject.keywordAuthor | P300 extraction | - |
dc.subject.keywordAuthor | Independent component analysis | - |
dc.subject.keywordAuthor | Constrained ICA | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.