Full metadata record

DC Field Value Language
dc.contributor.authorKim, Tae Ann-
dc.contributor.authorKim, Hee Suk-
dc.contributor.authorLee, Sang Soo-
dc.contributor.authorPark, Min-
dc.date.accessioned2024-01-20T15:32:01Z-
dc.date.available2024-01-20T15:32:01Z-
dc.date.created2021-09-05-
dc.date.issued2012-02-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/129577-
dc.description.abstractSingle-walled carbon nanotube (SWCNT)/silicone rubber composites that can be used in fabricating compliant electrodes are prepared by spraying a mixed solution of ionic-liquid-based SWCNT gel and silicone rubber onto an elastic substrate. Subsequently, the composites are exposed to nitric acid vapor. Scanning electron microscopy and atomic force microscopy images of the composites show that the SWCNTs are finely dispersed in the polymer matrix due to the addition of the ionic liquid. Doping of the SWCNTs by nitric acid can significantly lower the sheet resistance (R-s) of the composites; samples with 4 wt% of SWCNT content exhibit the lowest R-s value (50 Omega sq(-1)). This sheet resistance corresponds to a conductivity value of 63 S cm(-1). In addition, the composites retain a high conductivity after several tensile strains are applied. Stretching the composite sample to 300% of the original length increased the R-s value to 320 Omega sq(-1) (19 S cm(-1)). Even after 20th stretch/release/stretch cycle, the conductivity remains constant at a value of 18 S cm(-1). These results provide a scalable route for preparing highly stretchable and conductive SWCNT composites with relatively low SWCNT concentrations. (C) 2011 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectNANOTUBES-
dc.subjectTRANSPARENT-
dc.subjectFILMS-
dc.subjectPRESSURE-
dc.subjectSENSORS-
dc.subjectDESIGNS-
dc.titleSingle-walled carbon nanotube/silicone rubber composites for compliant electrodes-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2011.08.070-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.50, no.2, pp.444 - 449-
dc.citation.titleCARBON-
dc.citation.volume50-
dc.citation.number2-
dc.citation.startPage444-
dc.citation.endPage449-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000297397700012-
dc.identifier.scopusid2-s2.0-80055076387-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusDESIGNS-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE