Transport analysis in reverse electrodialysis with pulsatile flows for enhanced power generation

Authors
Kim, Kwang SeokRyoo, WonChun, Myung-SukChung, Gui-YungLee, Seung Oh
Issue Date
2012-02
Publisher
KOREAN INST CHEM ENGINEERS+
Citation
KOREAN JOURNAL OF CHEMICAL ENGINEERING, v.29, no.2, pp.162 - 168
Abstract
Time-dependent velocity profile and concentration distributions formed in a single reverse electrodialysis (RED) unit have been successfully pursued using simulation framework for evaluating performance of the unit, i.e., open circuit voltage and short circuit current. The single RED unit consists of two adjunct fluid channels, separated by the semi-permeable membrane. Through one of the channels, sea water flows, and the other is occupied by fresh water, flowing in the opposite direction (countercurrent operation). The diffusion-convection transport of the rate-limiting ion, Na+ in this study, for both channels is treated. The diffusive transport of cation across the membrane is expressed as boundary conditions for the bi-mechanism model. Our simulations conducted using an orthogonal collocation on finite element scheme show that the concentration difference of 35 g/L between sea water and fresh water results in the open circuit voltage of 63 mV and the short circuit current density of 11.5 A/m(2). These values are close to ones that were obtained from the experiments.
Keywords
ENERGY; CELLS; ENERGY; CELLS; Reverse Electrodialysis; Convection-Diffusion; Pulsatile Flow; Nernst-Planck Equation; Open Circuit
ISSN
0256-1115
URI
https://pubs.kist.re.kr/handle/201004/129609
DOI
10.1007/s11814-011-0198-y
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE