Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dong-Ik-
dc.contributor.authorHong, Seung Hee-
dc.contributor.authorPhaniraj, Madakashira P.-
dc.contributor.authorHan, Heung Nam-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorCho, Young Whan-
dc.date.accessioned2024-01-20T16:02:27Z-
dc.date.available2024-01-20T16:02:27Z-
dc.date.created2021-09-05-
dc.date.issued2011-11-
dc.identifier.issn0960-3409-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/129838-
dc.description.abstractThe oxide layer formation of ferritic stainless steel (Crofer22APU) oxidized in an air furnace at 800 degrees C was analysed by transmission electron microscopy (TEM) and electron back scattered diffraction (EBSD). EBSD analysis revealed that crystallographic orientation affects the oxidation behaviour of Crofer22APU. On {110} grains, most oxide granules had the same orientation but on {111} grains, they had random orientation. TEM analysis revealed that the oxide layer consisted of spinel-chromia-spinel multi layered structure on the {110} matrix grain but no sub spinel oxide layer on the {111} matrix grain. On the {110} closed packed plane of matrix, the chromia oxide formation with the < 110 > direction of rhombohedral structure on the {001} closed packed plane parallels the < 001 > direction on the {110} plane of BCC matrix was observed, which is known as Pitsch-Schrader orientation relationship. On the {111} plane grain, there was no specific orientation relationship. Energy dispersive spectroscopy (EDS) analysis in TEM showed that an Mn rich region was developed on the {110} grain beneath chromia oxide and the conversion of this region to (Cr,Mn)(3)O(4) spinel oxide layer causes multi layered oxide structures on the {110} matrix grain.-
dc.languageEnglish-
dc.publisherSCIENCE REVIEWS 2000 LTD-
dc.subjectCHROMIUM VAPORIZATION-
dc.subjectOXIDATION-
dc.subjectALLOYS-
dc.subjectGROWTH-
dc.subjectSCALES-
dc.subjectSOFCS-
dc.titleMicrostructural analysis of oxide layer formation in ferritic stainless steel interconnects-
dc.typeArticle-
dc.identifier.doi10.3184/096034011X13185032513419-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS AT HIGH TEMPERATURES, v.28, no.4, pp.285 - 289-
dc.citation.titleMATERIALS AT HIGH TEMPERATURES-
dc.citation.volume28-
dc.citation.number4-
dc.citation.startPage285-
dc.citation.endPage289-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000298482400006-
dc.identifier.scopusid2-s2.0-83455177550-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHROMIUM VAPORIZATION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusSCALES-
dc.subject.keywordPlusSOFCS-
dc.subject.keywordAuthormicrostructural analysis-
dc.subject.keywordAuthoroxide layer formation-
dc.subject.keywordAuthorferritic stainless steel interconnects-
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE