Full metadata record

DC Field Value Language
dc.contributor.authorChen, Yuli-
dc.contributor.authorPark, Sung-Kee-
dc.contributor.authorMa, Yide-
dc.contributor.authorAla, Rajeshkanna-
dc.date.accessioned2024-01-20T17:01:00Z-
dc.date.available2024-01-20T17:01:00Z-
dc.date.created2022-01-10-
dc.date.issued2011-06-
dc.identifier.issn1045-9227-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/130272-
dc.description.abstractAn automatic parameter setting method of a simplified pulse coupled neural network (SPCNN) is proposed here. Our method successfully determines all the adjustable parameters in SPCNN and does not need any training and trials as required by previous methods. In order to achieve this goal, we try to derive the general formulae of dynamic threshold and internal activity of the SPCNN according to the dynamic properties of neurons, and then deduce the sub-intensity range expression of each segment based on the general formulae. Besides, we extract information from an input image, such as the standard deviation and the optimal histogram threshold of the image, and attempt to build a direct relation between the dynamic properties of neurons and the static properties of each input image. Finally, the experimental segmentation results of the gray natural images from the Berkeley Segmentation Dataset, rather than synthetic images, prove the validity and efficiency of our proposed automatic parameter setting method of SPCNN.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectCOUPLED NEURAL-NETWORKS-
dc.subjectROTATION-
dc.subjectLINKING-
dc.subjectSCALE-
dc.titleA New Automatic Parameter Setting Method of a Simplified PCNN for Image Segmentation-
dc.typeArticle-
dc.identifier.doi10.1109/TNN.2011.2128880-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON NEURAL NETWORKS, v.22, no.6, pp.880 - 892-
dc.citation.titleIEEE TRANSACTIONS ON NEURAL NETWORKS-
dc.citation.volume22-
dc.citation.number6-
dc.citation.startPage880-
dc.citation.endPage892-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000291355700005-
dc.identifier.scopusid2-s2.0-79957971391-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Hardware & Architecture-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOUPLED NEURAL-NETWORKS-
dc.subject.keywordPlusROTATION-
dc.subject.keywordPlusLINKING-
dc.subject.keywordPlusSCALE-
dc.subject.keywordAuthorsub-intensity range-
dc.subject.keywordAuthorAutomatic parameter setting-
dc.subject.keywordAuthordynamic property-
dc.subject.keywordAuthorgeneral formulae-
dc.subject.keywordAuthorimage segmentation-
dc.subject.keywordAuthoroptimal histogram threshold-
dc.subject.keywordAuthorsimplified pulse coupled neural network-
dc.subject.keywordAuthorstandard deviation-
dc.subject.keywordAuthorstatic property-
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE