Full metadata record

DC Field Value Language
dc.contributor.authorBaek, Seung Man-
dc.contributor.authorYu, Seung Ho-
dc.contributor.authorNam, Jin Hyun-
dc.contributor.authorKim, Charn-Jung-
dc.date.accessioned2024-01-20T17:01:27Z-
dc.date.available2024-01-20T17:01:27Z-
dc.date.created2021-09-05-
dc.date.issued2011-06-
dc.identifier.issn1359-4311-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/130294-
dc.description.abstractA uniform temperature distribution is important to obtain better control and higher performance of polymer electrolyte membrane fuel cells (PEMFCs). In PEMFCs, more than half of the chemical energy of hydrogen is converted into heat during the electrochemical general:ion of electricity. If not being properly exhausted, this reaction heat overheats the PEMFCs and thus impairs their performance and durability. In general, large-scale PEMFCs are cooled by liquid water that circulates through coolant flow channels in bipolar plates or in dedicated cooling plates. In this study, detailed fluid flow and heat transfer in large-scale cooling plates with 13 cm x 18 cm square area was simulated using a commercial computational fluid dynamics (CFD) code. Based on the CFD simulations, the Performances of six different coolant flow field designs were assessed in terms of the maximum temperature, temperature uniformity, and pressure drop characteristics. The results demonstrated that multi-pass serpentine flow field (MPSFF) designs could significantly improve the uniformity of temperature distribution in a cooling plate compared with the conventional serpentine flow field designs, while maintaining the coolant pressure drop similar. (c) 2011 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectTHERMAL MANAGEMENT ISSUES-
dc.subjectFUEL-CELLS-
dc.subjectPLATES-
dc.subjectPERFORMANCE-
dc.titleA numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs-
dc.typeArticle-
dc.identifier.doi10.1016/j.applthermaleng.2011.01.009-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED THERMAL ENGINEERING, v.31, no.8-9, pp.1427 - 1434-
dc.citation.titleAPPLIED THERMAL ENGINEERING-
dc.citation.volume31-
dc.citation.number8-9-
dc.citation.startPage1427-
dc.citation.endPage1434-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000289385900008-
dc.identifier.scopusid2-s2.0-79952536479-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERMAL MANAGEMENT ISSUES-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusPLATES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorPolymer electrolyte membrane fuel cells-
dc.subject.keywordAuthorCooling plate-
dc.subject.keywordAuthorFlow field design-
dc.subject.keywordAuthorTemperature uniformity-
dc.subject.keywordAuthorParallel Serpentine flow field-
dc.subject.keywordAuthorMulti-pass serpentine flow field-
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE