Embossed TiO2 Thin Films with Tailored Links between Hollow Hemispheres: Synthesis and Gas-Sensing Properties

Authors
Moon, Hi GyuShim, Young-SeokSu, DongPark, Hyung-HoYoon, Seok-JinJang, Ho Won
Issue Date
2011-05-26
Publisher
American Chemical Society
Citation
The Journal of Physical Chemistry C, v.115, no.20, pp.9993 - 9999
Abstract
Embossed TiO2 thin films with high surface areas were achieved using soft templates composed of monolayer polystyrene beads. The structure of links between beads in the templates could be controlled by varying O-2 plasma etching time, resulting in a variety of templates with close-linked, nanolinked, or isolated beads. Room-temperature deposition of TiO2 on the plasma-treated templates and calcination at 550 degrees C resulted in embossed films with tailored links between anatase TiO2 hollow hemispheres. Although all embossed TiO2 films displayed a similar increase in the surface-to-volume ratio compared with a plain TiO2 thin film, the response of embossed TiO2 films with nanolinked hollow hemispheres to CO or ethanol gases was much higher than the response of films with close-linked or isolated. hollow hemispheres. The strong correlation between gas sensitivity and the structure of links between the TiO2 hollow hemispheres revealed the critical importance of tailoring links between individual oxide nanostructures for enhancing gas-sensing properties of the ensemble of the individual nanostructures. The facile and large-scale synthesis of embossed TiO2 films with nanolinked hollow hemispheres on Si substrates and the high sensitivity that is achieved without the aid of additives provide a sustainable competitive advantage over other methods for fabricating highly sensitive metal oxide gas sensors.
Keywords
SENSOR APPLICATIONS; HYDROGEN SENSOR; METAL-OXIDES; TEMPLATES; NANOBELTS; NANOWIRES; NANOSTRUCTURES; PERFORMANCE; FABRICATION; NANOFIBERS; SENSOR APPLICATIONS; HYDROGEN SENSOR; METAL-OXIDES; TEMPLATES; NANOBELTS; NANOWIRES; NANOSTRUCTURES; PERFORMANCE; FABRICATION; NANOFIBERS; TiO2; embossed; nano-links; gas sensors; hollow hemispheres
ISSN
1932-7447
URI
https://pubs.kist.re.kr/handle/201004/130335
DOI
10.1021/jp2020325
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE