Full metadata record

DC Field Value Language
dc.contributor.authorLee, S.-
dc.contributor.authorChun, C.-
dc.contributor.authorKwon, T.-B.-
dc.contributor.authorKang, S.-
dc.date.accessioned2024-01-20T17:03:06Z-
dc.date.available2024-01-20T17:03:06Z-
dc.date.created2021-09-02-
dc.date.issued2011-05-
dc.identifier.issn1976-5622-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/130373-
dc.description.abstractThis paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm. ? ICROS 2011.-
dc.languageKorean-
dc.subjectAdaptive Control-
dc.subjectBest paths-
dc.subjectBezier curve-
dc.subjectMaximum probability-
dc.subjectOutdoor navigation-
dc.subjectPath planners-
dc.subjectPath-planning algorithm-
dc.subjectProcessing time-
dc.subjectSensor measurements-
dc.subjectTarget point-
dc.subjectUnmanned ground vehicles-
dc.subjectWaypoints-
dc.subjectWheel encoders-
dc.subjectAlgorithms-
dc.subjectComputer graphics-
dc.subjectEstimation-
dc.subjectGeometry-
dc.subjectIntelligent vehicle highway systems-
dc.subjectInterpolation-
dc.subjectSensors-
dc.subjectMotion planning-
dc.titleBezier curve-based path planning for robust waypoint navigation of unmanned ground vehicle-
dc.typeArticle-
dc.identifier.doi10.5302/J.ICROS.2011.17.5.429-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Institute of Control, Robotics and Systems, v.17, no.5, pp.429 - 435-
dc.citation.titleJournal of Institute of Control, Robotics and Systems-
dc.citation.volume17-
dc.citation.number5-
dc.citation.startPage429-
dc.citation.endPage435-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART001549184-
dc.identifier.scopusid2-s2.0-84861136028-
dc.type.docTypeArticle-
dc.subject.keywordPlusAdaptive Control-
dc.subject.keywordPlusBest paths-
dc.subject.keywordPlusBezier curve-
dc.subject.keywordPlusMaximum probability-
dc.subject.keywordPlusOutdoor navigation-
dc.subject.keywordPlusPath planners-
dc.subject.keywordPlusPath-planning algorithm-
dc.subject.keywordPlusProcessing time-
dc.subject.keywordPlusSensor measurements-
dc.subject.keywordPlusTarget point-
dc.subject.keywordPlusUnmanned ground vehicles-
dc.subject.keywordPlusWaypoints-
dc.subject.keywordPlusWheel encoders-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusComputer graphics-
dc.subject.keywordPlusEstimation-
dc.subject.keywordPlusGeometry-
dc.subject.keywordPlusIntelligent vehicle highway systems-
dc.subject.keywordPlusInterpolation-
dc.subject.keywordPlusSensors-
dc.subject.keywordPlusMotion planning-
dc.subject.keywordAuthorBezier curve-
dc.subject.keywordAuthorMotion planning-
dc.subject.keywordAuthorOutdoor navigation-
dc.subject.keywordAuthorUnmanned ground vehicle-
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE