Full metadata record

DC Field Value Language
dc.contributor.authorPatil, Kailash Yashvant-
dc.contributor.authorYoon, Sung Pil-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorLim, Tae-Hoon-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorOh, In-Hwan-
dc.contributor.authorHong, Seong-Ahn-
dc.date.accessioned2024-01-20T17:30:36Z-
dc.date.available2024-01-20T17:30:36Z-
dc.date.created2021-09-01-
dc.date.issued2011-04-
dc.identifier.issn0022-2461-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/130503-
dc.description.abstractIn this study, we investigated the thermodynamics and experimental performance of Al, Zr, and Ce species under anode and cathode gas conditions in Li/K carbonate at 650 A degrees C. Among the Al, Zr, and Ce species investigated, we found that lithium aluminate (LiAlO2), lithium zirconate (Li2ZrO3), and cerium/ceria oxide (CeO2) were the most stable materials. Experimentally, we performed immersion tests in molten (Li-0.62/K-0.38)(2)CO3 at 650 A degrees C to evaluate the phase and microstructure stabilities of these materials. The gamma-LiAlO2 phase transformation, determined using X-ray diffractometry, was dependent on the immersion time. We performed similar measurements for alpha-LiAlO2, Li2ZrO3, and CeO2 materials in molten Li/K carbonate at 650 A degrees C. From immersion tests, the presence of the alpha-LiAlO2 phase revealed that phase transformation of gamma-LiAlO2 occurs in Li/K carbonate melts under cathode gas atmospheres; in contrast, no phase transformation was evident after immersion of the pure alpha-LiAlO2 phase in molten carbonate for 5,000 h. Furthermore, we found that Li2ZrO3 and CeO2 were stable phases after immersion in molten carbonate at 650 A degrees C, under both anode and cathode gas atmospheres, for more than 5,000 h.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectELECTROLYTE MATRIX-
dc.subjectLITHIUM ALUMINATE-
dc.subjectCRYSTAL-STRUCTURE-
dc.subjectLIALO2-
dc.subjectLI2CO3-NA2CO3-
dc.subjectBEHAVIOR-
dc.subjectTRANSFORMATION-
dc.subjectGROWTH-
dc.subjectNICKEL-
dc.titlePhase stabilities in molten Li/K carbonate of efficient matrix materials for molten carbonate fuel cells: thermodynamic calculations and experimental investigations-
dc.typeArticle-
dc.identifier.doi10.1007/s10853-010-5108-x-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS SCIENCE, v.46, no.8, pp.2557 - 2567-
dc.citation.titleJOURNAL OF MATERIALS SCIENCE-
dc.citation.volume46-
dc.citation.number8-
dc.citation.startPage2557-
dc.citation.endPage2567-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000286633300020-
dc.identifier.scopusid2-s2.0-79751529181-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROLYTE MATRIX-
dc.subject.keywordPlusLITHIUM ALUMINATE-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusLIALO2-
dc.subject.keywordPlusLI2CO3-NA2CO3-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusNICKEL-
dc.subject.keywordAuthorPhase stability-
dc.subject.keywordAuthorThermodynamic calculation-
dc.subject.keywordAuthormatrix material-
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE