Preparation of a CO-tolerant PtRuxSny/C electrocatalyst with an optimal Ru/Sn ratio by selective Sn-deposition on the surfaces of Pt and Ru

Authors
Yoo, Jong SukKim, Hyun TaeJoh, Han-IkKim, HeeyeonMoon, Sang Heup
Issue Date
2011-02
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.36, no.3, pp.1930 - 1938
Abstract
A CO-tolerant PtRuxSny/C electrocatalyst, with an optimal x/y ratio of 0.8/0.2, was prepared by selectively depositing Sn on the metallic surface of PtRu0.8/C for use as the anode in a polymer electrolyte membrane fuel cell. The CO tolerance of the catalyst was greater when Sn was added by chemical vapor deposition (CVD) than by a conventional precipitation method because most of the Sn added by CVD was located in the vicinity of Pt and Ru surfaces, on which CO molecules were strongly adsorbed. Accordingly, the bi-functional mechanism of CO oxidation, which involved the migration of oxygenated species from the Sn to the adsorbed CO, was expected to be promoted to greater extents in the catalysts prepared by Sn-CVD than those prepared by Sn-precipitation. On the other hand, the ligand-effect mechanism of CO oxidation, which was facilitated by the Pt-Ru alloy formation, was not much affected by the added Sn because the Pt-Ru alloy remained unchanged, particularly when y <= 0.2. Among PtRuxSny/C catalysts prepared by Sn-CVD, one prepared by partially substituting Sn for Ru in the PtRu1.0/C catalyst, e.g., PtRu0.8Sn0.2/C, showed higher CO tolerance than one prepared by simply adding Sn to the PtRu1.0/C catalyst, e.g., PtRu1.0Sn0.2/C, which demonstrated the importance of an optimum x/y ratio in the design of the ternary PtRuxSny/C catalysts. Crown Copyright (C) 2010 Published by Elsevier Ltd on behalf of Professor T. Nejat Veziroglu. All rights reserved.
Keywords
TEMPERATURE FUEL-CELL; ANODE ELECTROCATALYSTS; CARBON-MONOXIDE; CATALYSTS; OXIDATION; METHANOL; ELECTROOXIDATION; HYDROGEN; PLATINUM; PTRU/C; TEMPERATURE FUEL-CELL; ANODE ELECTROCATALYSTS; CARBON-MONOXIDE; CATALYSTS; OXIDATION; METHANOL; ELECTROOXIDATION; HYDROGEN; PLATINUM; PTRU/C; CVD; CO tolerance; Fuel cell; Pt; Ru; Sn
ISSN
0360-3199
URI
https://pubs.kist.re.kr/handle/201004/130700
DOI
10.1016/j.ijhydene.2010.11.061
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE