Full metadata record

DC Field Value Language
dc.contributor.authorKim, Yong-Jae-
dc.contributor.authorSon, Kwangsoo-
dc.contributor.authorChoi, In-Chul-
dc.contributor.authorChoi, In-Suk-
dc.contributor.authorPark, Won Il-
dc.contributor.authorJang, Jae-il-
dc.date.accessioned2024-01-20T17:35:06Z-
dc.date.available2024-01-20T17:35:06Z-
dc.date.created2021-09-02-
dc.date.issued2011-01-21-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/130722-
dc.description.abstractDespite many efforts to advance the understanding of nanowire mechanics, a precise characterization of the mechanical behavior and properties of nanowires is still far from standardization. The primary objective of this work is to suggest the most appropriate testing method for accurately determining the mechanical performance of silicon nanowires. To accomplish this goal, the mechanical properties of silicon nanowires with a radius between 15 and 70 nm (this may be the widest range ever reported in this research field) are systematically explored by performing the two most popular nanomechanical tests, atomic force microscopy (AFM) bending and nanoindentation, on the basis of different analytical models and testing conditions. A variety of nanomechanical experiments lead to the suggestion that AFM bending based on the line tension model is the most appropriate and reliable testing method for mechanical characterization of silicon nanowires. This recommendation is also guided by systematic investigations of the testing environments through finite element simulations. Results are then discussed in terms of the size-dependency of the mechanical properties; in the examined range of nanowire radius, the elastic modulus is about 185 GPa without showing significant size dependency, whereas the nanowire strength dramatically increases from 2 to 10 GPa as the radius is reduced.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectCATALYST-FREE SYNTHESIS-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectELASTIC PROPERTIES-
dc.subjectMODULUS-
dc.subjectSTRENGTH-
dc.subjectHARDNESS-
dc.subjectINDENTER-
dc.subjectFILMS-
dc.subjectLOAD-
dc.subjectSI-
dc.titleExploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.201001471-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.21, no.2, pp.279 - 286-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume21-
dc.citation.number2-
dc.citation.startPage279-
dc.citation.endPage286-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000285887100011-
dc.identifier.scopusid2-s2.0-78650693362-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCATALYST-FREE SYNTHESIS-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusELASTIC PROPERTIES-
dc.subject.keywordPlusMODULUS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusHARDNESS-
dc.subject.keywordPlusINDENTER-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusLOAD-
dc.subject.keywordPlusSI-
dc.subject.keywordAuthorAFM bending-
dc.subject.keywordAuthormechanical properties-
dc.subject.keywordAuthornanoindentation-
dc.subject.keywordAuthorsilicon nanowires-
dc.subject.keywordAuthorsize effects-
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE