Full metadata record

DC Field Value Language
dc.contributor.authorShlyakhtin, Oleg A.-
dc.contributor.authorOh, Young-Jei-
dc.date.accessioned2024-01-20T20:33:06Z-
dc.date.available2024-01-20T20:33:06Z-
dc.date.created2021-09-05-
dc.date.issued2009-10-
dc.identifier.issn1385-3449-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/132080-
dc.description.abstractCryogels are usually obtained by freezing and thawing or freeze drying of gels and residues. Essential morphological features of the cryogels are bimodal pore size distribution, nanosize of the primary particles (crystallites) and their low agglomeration. Widely used for a decades in the polymer science and technology, cryogels find now a growing number of applications in the electroceramic materials. Freeze casting technique based on the freeze gelation effect is proved to be useful forming method in the production of complex-shaped SiO2-containing electroceramics. Directed modification of the micromorphology by using solvent exchange schemes allows to obtain SiO2 cryogel monoliths with density a parts per thousand currency sign 0.05 g cm(-3) and specific surface area 700-800 m(2) g(-1) suitable for cryogenic thermal insulation of the superconducting devices. Excellent electrocatalytic activity of the macro/mesoporous PtRu/C cryogels in the methanol oxidation reaction makes them perspective anode materials of direct methanol fuel cells. Application of the cryogel-derived starting powders promoted substantial reduction of the sintering temperatures for a number of electroceramic materials. MnO2- and V2O5-based cryogels are efficient cathode materials for secondary lithium batteries with specific capacity up to 300 mAh g(-1). Recent studies demonstrated also a feasibility of cryochemical approaches to the synthesis of complex oxide-based nanocrystalline electrode materials for electrochemical supercapacitors with high specific capacity at current densities up to 50 mA cm(-2).-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectSOL-GEL POLYCONDENSATION-
dc.subjectIN-SITU OBSERVATION-
dc.subjectCARBON CRYOGEL-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectMETHANOL ELECTROOXIDATION-
dc.subjectTEXTURAL PROPERTIES-
dc.subjectPORE STRUCTURE-
dc.subjectSURFACE-STATE-
dc.subjectFUEL-CELL-
dc.subjectFREEZE-
dc.titleInorganic cryogels for energy saving and conversion-
dc.typeArticle-
dc.identifier.doi10.1007/s10832-008-9488-0-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF ELECTROCERAMICS, v.23, no.2-4, pp.452 - 461-
dc.citation.titleJOURNAL OF ELECTROCERAMICS-
dc.citation.volume23-
dc.citation.number2-4-
dc.citation.startPage452-
dc.citation.endPage461-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000271982300068-
dc.identifier.scopusid2-s2.0-73449085186-
dc.relation.journalWebOfScienceCategoryMaterials Science, Ceramics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeReview-
dc.subject.keywordPlusSOL-GEL POLYCONDENSATION-
dc.subject.keywordPlusIN-SITU OBSERVATION-
dc.subject.keywordPlusCARBON CRYOGEL-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusMETHANOL ELECTROOXIDATION-
dc.subject.keywordPlusTEXTURAL PROPERTIES-
dc.subject.keywordPlusPORE STRUCTURE-
dc.subject.keywordPlusSURFACE-STATE-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusFREEZE-
dc.subject.keywordAuthorCryogel-
dc.subject.keywordAuthorFreeze drying-
dc.subject.keywordAuthorNanocrystalline materials-
dc.subject.keywordAuthorSol-gel synthesis-
dc.subject.keywordAuthorMesoporous materials-
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE