Full metadata record

DC Field Value Language
dc.contributor.authorMin, H.S.-
dc.contributor.authorKim, S.-
dc.contributor.authorCheong, D.-S.-
dc.contributor.authorChoi, W.K.-
dc.contributor.authorOh, Y.J.-
dc.contributor.authorLee, J.-K.-
dc.date.accessioned2024-01-20T20:34:18Z-
dc.date.available2024-01-20T20:34:18Z-
dc.date.created2021-09-02-
dc.date.issued2009-10-
dc.identifier.issn1225-0562-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/132141-
dc.description.abstractActivated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m2/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm2.-
dc.languageKorean-
dc.subjectActivation method-
dc.subjectAqueous electrolyte-
dc.subjectCarbon electrode-
dc.subjectDischarge current density-
dc.subjectElectric double layer capacitor-
dc.subjectElectrical double layer capacitor-
dc.subjectElectrochemical capacitor-
dc.subjectElectrochemical characteristics-
dc.subjectElectrochemical performance-
dc.subjectEquivalent series resistance-
dc.subjectHigh electrical conductivity-
dc.subjectHigh mechanical strength-
dc.subjectHigh surface area-
dc.subjectKOH electrolyte-
dc.subjectLarge surface area-
dc.subjectLow-yield-
dc.subjectMulti-wall carbon nanotubes-
dc.subjectNi foam-
dc.subjectPolarizabilities-
dc.subjectSpecific capacitance-
dc.subjectSurface area-
dc.subjectThermal chemical vapor deposition-
dc.subjectUniform diameter-
dc.subjectActivated carbon-
dc.subjectCapacitance-
dc.subjectCapacitors-
dc.subjectCarbon nanofibers-
dc.subjectCarbon nanotubes-
dc.subjectChemical stability-
dc.subjectChemical vapor deposition-
dc.subjectElectric conductivity-
dc.subjectElectric discharges-
dc.subjectElectrochemical properties-
dc.subjectElectrochemistry-
dc.subjectElectrolysis-
dc.subjectElectrolytes-
dc.subjectIntelligent materials-
dc.subjectSurfaces-
dc.subjectElectrochemical electrodes-
dc.titleImprovement of electrochemical characteristics by changing morphologies of carbon electrode-
dc.typeArticle-
dc.identifier.doi10.3740/MRSK.2009.19.10.544-
dc.description.journalClass1-
dc.identifier.bibliographicCitationKorean Journal of Materials Research, v.19, no.10, pp.544 - 549-
dc.citation.titleKorean Journal of Materials Research-
dc.citation.volume19-
dc.citation.number10-
dc.citation.startPage544-
dc.citation.endPage549-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART001386442-
dc.identifier.scopusid2-s2.0-77949535450-
dc.type.docTypeArticle-
dc.subject.keywordPlusActivation method-
dc.subject.keywordPlusAqueous electrolyte-
dc.subject.keywordPlusCarbon electrode-
dc.subject.keywordPlusDischarge current density-
dc.subject.keywordPlusElectric double layer capacitor-
dc.subject.keywordPlusElectrical double layer capacitor-
dc.subject.keywordPlusElectrochemical capacitor-
dc.subject.keywordPlusElectrochemical characteristics-
dc.subject.keywordPlusElectrochemical performance-
dc.subject.keywordPlusEquivalent series resistance-
dc.subject.keywordPlusHigh electrical conductivity-
dc.subject.keywordPlusHigh mechanical strength-
dc.subject.keywordPlusHigh surface area-
dc.subject.keywordPlusKOH electrolyte-
dc.subject.keywordPlusLarge surface area-
dc.subject.keywordPlusLow-yield-
dc.subject.keywordPlusMulti-wall carbon nanotubes-
dc.subject.keywordPlusNi foam-
dc.subject.keywordPlusPolarizabilities-
dc.subject.keywordPlusSpecific capacitance-
dc.subject.keywordPlusSurface area-
dc.subject.keywordPlusThermal chemical vapor deposition-
dc.subject.keywordPlusUniform diameter-
dc.subject.keywordPlusActivated carbon-
dc.subject.keywordPlusCapacitance-
dc.subject.keywordPlusCapacitors-
dc.subject.keywordPlusCarbon nanofibers-
dc.subject.keywordPlusCarbon nanotubes-
dc.subject.keywordPlusChemical stability-
dc.subject.keywordPlusChemical vapor deposition-
dc.subject.keywordPlusElectric conductivity-
dc.subject.keywordPlusElectric discharges-
dc.subject.keywordPlusElectrochemical properties-
dc.subject.keywordPlusElectrochemistry-
dc.subject.keywordPlusElectrolysis-
dc.subject.keywordPlusElectrolytes-
dc.subject.keywordPlusIntelligent materials-
dc.subject.keywordPlusSurfaces-
dc.subject.keywordPlusElectrochemical electrodes-
dc.subject.keywordAuthorCarbon nanofiber-
dc.subject.keywordAuthorEDLC (electric double layer capacitor)-
dc.subject.keywordAuthorEquivalent series resistance-
dc.subject.keywordAuthorKOH electrolyte-
dc.subject.keywordAuthorRaman-
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE