Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Gwang-Hee | - |
dc.contributor.author | Park, Jae-Gwan | - |
dc.contributor.author | Sung, Yun-Mo | - |
dc.contributor.author | Chung, Kyung Yoon | - |
dc.contributor.author | Il Cho, Won | - |
dc.contributor.author | Kim, Dong-Wan | - |
dc.date.accessioned | 2024-01-20T21:03:17Z | - |
dc.date.available | 2024-01-20T21:03:17Z | - |
dc.date.created | 2021-09-03 | - |
dc.date.issued | 2009-07-22 | - |
dc.identifier.issn | 0957-4484 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/132305 | - |
dc.description.abstract | We demonstrate the formation of a highly conductive, Fe-0/Fe3O4 nanocomposite electrode by the hydrogen reduction process. Fe2O3 nanobundles composed of one-dimensional nanowires were initially prepared through thermal dehydrogenation of hydrothermally synthesized FeOOH. The systematic phase and morphological evolutions from Fe2O3 to Fe2O3/Fe3O4, Fe3O4, and finally to Fe/Fe3O4 by the controlled thermochemical reduction at 300 degrees C in H-2 were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM). The Fe/Fe3O4 nanocomposite electrode shows excellent capacity retention (similar to 540 mA h g(-1) after 100 cycles at a rate of 185 mA g(-1)), compared to that of Fe2O3 nanobundles. This enhanced electrochemical performance in Fe/Fe3O4 composites was attributed to the formation of unique, core-shell nanostructures offering an efficient electron transport path to the current collector. | - |
dc.language | English | - |
dc.publisher | IOP PUBLISHING LTD | - |
dc.subject | REDUCTION | - |
dc.subject | NANORODS | - |
dc.subject | CO3O4 | - |
dc.title | Enhanced cycling performance of an Fe-0/Fe3O4 nanocomposite electrode for lithium-ion batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1088/0957-4484/20/29/295205 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | NANOTECHNOLOGY, v.20, no.29 | - |
dc.citation.title | NANOTECHNOLOGY | - |
dc.citation.volume | 20 | - |
dc.citation.number | 29 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000267612700007 | - |
dc.identifier.scopusid | 2-s2.0-67651152926 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | NANORODS | - |
dc.subject.keywordPlus | CO3O4 | - |
dc.subject.keywordAuthor | hydrogen reduction process | - |
dc.subject.keywordAuthor | core-shell nanostructure | - |
dc.subject.keywordAuthor | FeOOH precursor | - |
dc.subject.keywordAuthor | nanocomposite electrode | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.