Full metadata record

DC Field Value Language
dc.contributor.authorYoon, Gwonchan-
dc.contributor.authorPark, Hyeong-Jin-
dc.contributor.authorNa, Sungsoo-
dc.contributor.authorEom, Kilho-
dc.date.accessioned2024-01-20T21:32:55Z-
dc.date.available2024-01-20T21:32:55Z-
dc.date.created2021-09-03-
dc.date.issued2009-04-30-
dc.identifier.issn0192-8651-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/132553-
dc.description.abstractMechanical characterization of protein molecules has played a role on gaining insight into the biological functions of proteins, because some proteins perform the mechanical function. Here, we present the mesoscopic model of biological protein materials composed of protein crystals prescribed by Go potential for characterization of elastic behavior of protein materials. Specifically, we consider the representative volume element (RVE) containing the protein crystals represented by C-alpha atoms, prescribed by Go potential, with application of constant normal strain to RVE. The stress-strain relationship computed from virial stress theory provides the nonlinear elastic behavior of protein materials and their mechanical properties such as Young's modulus, quantitatively and/or qualitatively comparable with mechanical properties of biological protein materials obtained from experiments and/or atomistic simulations. Further, we discuss the role of native topology on the mechanical properties of protein crystals. It is shown that parallel strands (hydrogen bonds in parallel) enhance the mechanical resilience of protein materials. (C) 2008 Wiley Periodicals, Inc. J Comput Chem 30: 873-880, 2009-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectTITIN IMMUNOGLOBULIN DOMAINS-
dc.subjectSPIDER DRAGLINE SILK-
dc.subjectFRACTURE-MECHANICS-
dc.subjectTRANSITION-STATE-
dc.subjectELASTICITY-
dc.subjectDYNAMICS-
dc.subjectSTRENGTH-
dc.subjectMICROTUBULES-
dc.subjectSIMULATION-
dc.subjectTOPOLOGY-
dc.titleMesoscopic Model for Mechanical Characterization of Biological Protein Materials-
dc.typeArticle-
dc.identifier.doi10.1002/jcc.21107-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF COMPUTATIONAL CHEMISTRY, v.30, no.6, pp.873 - 880-
dc.citation.titleJOURNAL OF COMPUTATIONAL CHEMISTRY-
dc.citation.volume30-
dc.citation.number6-
dc.citation.startPage873-
dc.citation.endPage880-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000264651200004-
dc.identifier.scopusid2-s2.0-65449162336-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusTITIN IMMUNOGLOBULIN DOMAINS-
dc.subject.keywordPlusSPIDER DRAGLINE SILK-
dc.subject.keywordPlusFRACTURE-MECHANICS-
dc.subject.keywordPlusTRANSITION-STATE-
dc.subject.keywordPlusELASTICITY-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusMICROTUBULES-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusTOPOLOGY-
dc.subject.keywordAuthormechanical property-
dc.subject.keywordAuthorprotein crystal-
dc.subject.keywordAuthorGo model-
dc.subject.keywordAuthorvirial stress-
dc.subject.keywordAuthorYoung&apos-
dc.subject.keywordAuthors modulus-
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE