Full metadata record

DC Field Value Language
dc.contributor.authorSong, Chull Hwan-
dc.contributor.authorYoo, Seong Joon-
dc.contributor.authorWon, Chee Sun-
dc.contributor.authorKim, Hyoung Gon-
dc.date.accessioned2024-01-20T22:31:17Z-
dc.date.available2024-01-20T22:31:17Z-
dc.date.created2021-09-03-
dc.date.issued2008-11-
dc.identifier.issn1335-9150-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/133001-
dc.description.abstractThis paper extends our previous framework for digital photo annotation by adding noble approach of indoor/mixed/outdoor image classification. We propose the best feature vectors for a support vector machine based indoor/mixed/outdoor image classification. While previous research classifies photographs into indoor and outdoor, this study extends into three types, including indoor, mixed, and outdoor classes. This three-class method improves the performance of outdoor classification. This classification scheme showed 5-10% higher performance than previous research. This method is one of the components for digital image annotation. A digital camera or an annotation server connected to a ubiquitous computing network can automatically annotate captured photos using the proposed method.-
dc.languageEnglish-
dc.publisherSLOVAK ACAD SCIENCES INST INFORMATICS-
dc.titleSVM BASED INDOOR/MIXED/OUTDOOR CLASSIFICATION FOR DIGITAL PHOTO ANNOTATION IN A UBIQUITOUS COMPUTING ENVIRONMENT-
dc.typeArticle-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPUTING AND INFORMATICS, v.27, no.5, pp.757 - 767-
dc.citation.titleCOMPUTING AND INFORMATICS-
dc.citation.volume27-
dc.citation.number5-
dc.citation.startPage757-
dc.citation.endPage767-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000263340100006-
dc.identifier.scopusid2-s2.0-60749095659-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordAuthorImage classification-
dc.subject.keywordAuthorsupport vector machine-
dc.subject.keywordAuthorlow-level feature extraction-
Appears in Collections:
KIST Article > 2008
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE