Full metadata record

DC Field Value Language
dc.contributor.authorKang, Jin-Gu-
dc.contributor.authorKo, Young-Dae-
dc.contributor.authorPark, Jae-Gwan-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2024-01-20T22:33:48Z-
dc.date.available2024-01-20T22:33:48Z-
dc.date.created2021-09-03-
dc.date.issued2008-10-
dc.identifier.issn1931-7573-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/133097-
dc.description.abstractTransition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectNEGATIVE-ELECTRODE-
dc.subjectANODE MATERIALS-
dc.subjectPARTICLE-SIZE-
dc.subjectLI-
dc.subjectNANOPARTICLES-
dc.subjectPERFORMANCE-
dc.subjectALPHA-FE2O3-
dc.subjectREACTIVITY-
dc.subjectREDUCTION-
dc.titleOrigin of capacity fading in nano-sized Co3O4 electrodes: Electrochemical impedance spectroscopy study-
dc.typeArticle-
dc.identifier.doi10.1007/s11671-008-9176-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE RESEARCH LETTERS, v.3, no.10, pp.390 - 394-
dc.citation.titleNANOSCALE RESEARCH LETTERS-
dc.citation.volume3-
dc.citation.number10-
dc.citation.startPage390-
dc.citation.endPage394-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000259819700008-
dc.identifier.scopusid2-s2.0-53349103131-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusNEGATIVE-ELECTRODE-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusALPHA-FE2O3-
dc.subject.keywordPlusREACTIVITY-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordAuthornano-sized Co3O4-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthorcapacity fading-
dc.subject.keywordAuthorelectrochemical impedance spectroscopy-
dc.subject.keywordAuthorcharge transfer reaction-
Appears in Collections:
KIST Article > 2008
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE