Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwon, Jae-Sung | - |
dc.contributor.author | Maeng, Joo-Sung | - |
dc.contributor.author | Chun, Myung-Suk | - |
dc.contributor.author | Song, Simon | - |
dc.date.accessioned | 2024-01-20T23:02:49Z | - |
dc.date.available | 2024-01-20T23:02:49Z | - |
dc.date.created | 2021-09-03 | - |
dc.date.issued | 2008-07 | - |
dc.identifier.issn | 1613-4982 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/133348 | - |
dc.description.abstract | This paper addresses the effects of microchannel geometry with electrically insulating posts on a particle flow driven by electrokinesis and dielectrophoresis. An in-house numerical program is developed using a numerical model proposed in literature to predict particle flows in a microchannel with a circular post array. The numerical program is validated by comparing the results of the present study to those in the literature. Results obtained from a Monte-Carlo simulation confirm the three particle flow types driven by an external DC electric field: electrokinetic flow, streaming dielectrophoretic flow, and trapping dielectrophoretic flow. In addition, we study the effects of electrokinetic and dielectrophoretic forces on particle transports by introducing a ratio of lateral to longitudinal forces exerted on a particle. As a result, we propose an improved microchannel geometry to enhance particle transports across electrokinetic streamlines for a given power dissipation. The improved microchannel has a shorter longitudinal spacing between the circular posts than a reference microchannel. We also discuss the critical values of dimensionless variables that distinguish the three particle flow types for both improved and reference microchannels. | - |
dc.language | English | - |
dc.publisher | SPRINGER HEIDELBERG | - |
dc.subject | TOTAL ANALYSIS SYSTEMS | - |
dc.subject | ARRAY ELECTROPHORESIS CHIPS | - |
dc.subject | CAPILLARY-ELECTROPHORESIS | - |
dc.subject | ELECTROOSMOTIC FLOW | - |
dc.subject | SEPARATION | - |
dc.subject | TECHNOLOGY | - |
dc.subject | PARTICLES | - |
dc.subject | BACTERIA | - |
dc.subject | LIVE | - |
dc.title | Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s10404-007-0210-3 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | MICROFLUIDICS AND NANOFLUIDICS, v.5, no.1, pp.23 - 31 | - |
dc.citation.title | MICROFLUIDICS AND NANOFLUIDICS | - |
dc.citation.volume | 5 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 23 | - |
dc.citation.endPage | 31 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000256010500003 | - |
dc.identifier.scopusid | 2-s2.0-44249083976 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
dc.relation.journalWebOfScienceCategory | Physics, Fluids & Plasmas | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Instruments & Instrumentation | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | TOTAL ANALYSIS SYSTEMS | - |
dc.subject.keywordPlus | ARRAY ELECTROPHORESIS CHIPS | - |
dc.subject.keywordPlus | CAPILLARY-ELECTROPHORESIS | - |
dc.subject.keywordPlus | ELECTROOSMOTIC FLOW | - |
dc.subject.keywordPlus | SEPARATION | - |
dc.subject.keywordPlus | TECHNOLOGY | - |
dc.subject.keywordPlus | PARTICLES | - |
dc.subject.keywordPlus | BACTERIA | - |
dc.subject.keywordPlus | LIVE | - |
dc.subject.keywordAuthor | electrokinesis | - |
dc.subject.keywordAuthor | dielectrophoresis | - |
dc.subject.keywordAuthor | DC electric field | - |
dc.subject.keywordAuthor | insulating post | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.