Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Jae-Sung-
dc.contributor.authorMaeng, Joo-Sung-
dc.contributor.authorChun, Myung-Suk-
dc.contributor.authorSong, Simon-
dc.date.accessioned2024-01-20T23:02:49Z-
dc.date.available2024-01-20T23:02:49Z-
dc.date.created2021-09-03-
dc.date.issued2008-07-
dc.identifier.issn1613-4982-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/133348-
dc.description.abstractThis paper addresses the effects of microchannel geometry with electrically insulating posts on a particle flow driven by electrokinesis and dielectrophoresis. An in-house numerical program is developed using a numerical model proposed in literature to predict particle flows in a microchannel with a circular post array. The numerical program is validated by comparing the results of the present study to those in the literature. Results obtained from a Monte-Carlo simulation confirm the three particle flow types driven by an external DC electric field: electrokinetic flow, streaming dielectrophoretic flow, and trapping dielectrophoretic flow. In addition, we study the effects of electrokinetic and dielectrophoretic forces on particle transports by introducing a ratio of lateral to longitudinal forces exerted on a particle. As a result, we propose an improved microchannel geometry to enhance particle transports across electrokinetic streamlines for a given power dissipation. The improved microchannel has a shorter longitudinal spacing between the circular posts than a reference microchannel. We also discuss the critical values of dimensionless variables that distinguish the three particle flow types for both improved and reference microchannels.-
dc.languageEnglish-
dc.publisherSPRINGER HEIDELBERG-
dc.subjectTOTAL ANALYSIS SYSTEMS-
dc.subjectARRAY ELECTROPHORESIS CHIPS-
dc.subjectCAPILLARY-ELECTROPHORESIS-
dc.subjectELECTROOSMOTIC FLOW-
dc.subjectSEPARATION-
dc.subjectTECHNOLOGY-
dc.subjectPARTICLES-
dc.subjectBACTERIA-
dc.subjectLIVE-
dc.titleImprovement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations-
dc.typeArticle-
dc.identifier.doi10.1007/s10404-007-0210-3-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMICROFLUIDICS AND NANOFLUIDICS, v.5, no.1, pp.23 - 31-
dc.citation.titleMICROFLUIDICS AND NANOFLUIDICS-
dc.citation.volume5-
dc.citation.number1-
dc.citation.startPage23-
dc.citation.endPage31-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000256010500003-
dc.identifier.scopusid2-s2.0-44249083976-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTOTAL ANALYSIS SYSTEMS-
dc.subject.keywordPlusARRAY ELECTROPHORESIS CHIPS-
dc.subject.keywordPlusCAPILLARY-ELECTROPHORESIS-
dc.subject.keywordPlusELECTROOSMOTIC FLOW-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusBACTERIA-
dc.subject.keywordPlusLIVE-
dc.subject.keywordAuthorelectrokinesis-
dc.subject.keywordAuthordielectrophoresis-
dc.subject.keywordAuthorDC electric field-
dc.subject.keywordAuthorinsulating post-
Appears in Collections:
KIST Article > 2008
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE