Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Verma, Abhinav | - |
dc.contributor.author | Gopal, Srinivasa M. | - |
dc.contributor.author | Oh, Jung S. | - |
dc.contributor.author | Lee, Kyu H. | - |
dc.contributor.author | Wenzel, Wolfgang | - |
dc.date.accessioned | 2024-01-21T00:04:30Z | - |
dc.date.available | 2024-01-21T00:04:30Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2007-12 | - |
dc.identifier.issn | 0192-8651 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/133952 | - |
dc.description.abstract | The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01 Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 angstrom in < 24 h. (c) 2007 Wiley Periodicals, Inc. | - |
dc.language | English | - |
dc.publisher | WILEY | - |
dc.subject | REPLICA-EXCHANGE SIMULATIONS | - |
dc.subject | ENERGY LANDSCAPE | - |
dc.subject | STRUCTURE PREDICTION | - |
dc.subject | OPTIMIZATION | - |
dc.subject | MINIMIZATION | - |
dc.subject | PATHWAYS | - |
dc.subject | PEPTIDE | - |
dc.subject | SOLVATION | - |
dc.subject | COMPUTER | - |
dc.subject | MINIMUM | - |
dc.title | All-atom de novo protein folding with a scalable evolutionary algorithm | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/jcc.20750 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF COMPUTATIONAL CHEMISTRY, v.28, no.16, pp.2552 - 2558 | - |
dc.citation.title | JOURNAL OF COMPUTATIONAL CHEMISTRY | - |
dc.citation.volume | 28 | - |
dc.citation.number | 16 | - |
dc.citation.startPage | 2552 | - |
dc.citation.endPage | 2558 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000250972500006 | - |
dc.identifier.scopusid | 2-s2.0-35948929892 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | REPLICA-EXCHANGE SIMULATIONS | - |
dc.subject.keywordPlus | ENERGY LANDSCAPE | - |
dc.subject.keywordPlus | STRUCTURE PREDICTION | - |
dc.subject.keywordPlus | OPTIMIZATION | - |
dc.subject.keywordPlus | MINIMIZATION | - |
dc.subject.keywordPlus | PATHWAYS | - |
dc.subject.keywordPlus | PEPTIDE | - |
dc.subject.keywordPlus | SOLVATION | - |
dc.subject.keywordPlus | COMPUTER | - |
dc.subject.keywordPlus | MINIMUM | - |
dc.subject.keywordAuthor | De Novo protein folding | - |
dc.subject.keywordAuthor | evolutionary algorithm | - |
dc.subject.keywordAuthor | all-atom folding | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.