Full metadata record

DC Field Value Language
dc.contributor.authorVerma, Abhinav-
dc.contributor.authorGopal, Srinivasa M.-
dc.contributor.authorOh, Jung S.-
dc.contributor.authorLee, Kyu H.-
dc.contributor.authorWenzel, Wolfgang-
dc.date.accessioned2024-01-21T00:04:30Z-
dc.date.available2024-01-21T00:04:30Z-
dc.date.created2021-09-02-
dc.date.issued2007-12-
dc.identifier.issn0192-8651-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/133952-
dc.description.abstractThe search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01 Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 angstrom in < 24 h. (c) 2007 Wiley Periodicals, Inc.-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectREPLICA-EXCHANGE SIMULATIONS-
dc.subjectENERGY LANDSCAPE-
dc.subjectSTRUCTURE PREDICTION-
dc.subjectOPTIMIZATION-
dc.subjectMINIMIZATION-
dc.subjectPATHWAYS-
dc.subjectPEPTIDE-
dc.subjectSOLVATION-
dc.subjectCOMPUTER-
dc.subjectMINIMUM-
dc.titleAll-atom de novo protein folding with a scalable evolutionary algorithm-
dc.typeArticle-
dc.identifier.doi10.1002/jcc.20750-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF COMPUTATIONAL CHEMISTRY, v.28, no.16, pp.2552 - 2558-
dc.citation.titleJOURNAL OF COMPUTATIONAL CHEMISTRY-
dc.citation.volume28-
dc.citation.number16-
dc.citation.startPage2552-
dc.citation.endPage2558-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000250972500006-
dc.identifier.scopusid2-s2.0-35948929892-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusREPLICA-EXCHANGE SIMULATIONS-
dc.subject.keywordPlusENERGY LANDSCAPE-
dc.subject.keywordPlusSTRUCTURE PREDICTION-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusMINIMIZATION-
dc.subject.keywordPlusPATHWAYS-
dc.subject.keywordPlusPEPTIDE-
dc.subject.keywordPlusSOLVATION-
dc.subject.keywordPlusCOMPUTER-
dc.subject.keywordPlusMINIMUM-
dc.subject.keywordAuthorDe Novo protein folding-
dc.subject.keywordAuthorevolutionary algorithm-
dc.subject.keywordAuthorall-atom folding-
Appears in Collections:
KIST Article > 2007
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE