Replication of surfaces of natural leaves for enhanced micro-scale tribological property

Authors
Singh, R. ArvindYoon, Eui-SungKim, Hong JoonKim, JinseokJeong, Hoon EuiSuh, Kahp Y.
Issue Date
2007-05
Publisher
ELSEVIER
Citation
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, v.27, no.4, pp.875 - 879
Abstract
In this paper, we report on the replication of surfaces of Lotus and Colocasia leaves onto thin polymeric films using a capillarity-directed soft lithographic technique. The replication was carried out on poly(methyl methacrylate) (PMMA) film spin coated on silicon wafer using poly (dimethyl siloxane) (PDMS) molds. The function properties of the replicated surfaces were investigated at micro-scale in comparison with those of PMMA thin film and uncoated silicon wafer. The coefficients of friction of the replicated surfaces were almost five times lower than those of the PMMA thin film and four times lower than those of the uncoated silicon wafer. The superior micro-tribological properties of the replicated surfaces could be attributed to the reduced real area of contact projected by the surfaces. (C) 2006 Elsevier B.V. All rights reserved.
Keywords
ADHESION; FRICTION; ADHESION; FRICTION; lithography; biomimetic; polymer; micro; friction; tribology
ISSN
0928-4931
URI
https://pubs.kist.re.kr/handle/201004/134436
DOI
10.1016/j.msec.2006.10.007
Appears in Collections:
KIST Article > 2007
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE