Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwon, Soonil | - |
dc.contributor.author | Narayanan, Shrikanth | - |
dc.date.accessioned | 2024-01-21T01:35:03Z | - |
dc.date.available | 2024-01-21T01:35:03Z | - |
dc.date.created | 2021-08-31 | - |
dc.date.issued | 2007-01-01 | - |
dc.identifier.issn | 0167-8655 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/134752 | - |
dc.description.abstract | A new method for speaker identification that selectively uses feature vectors for robust decision-making is described. Experimental results, with short speech segments ranging from 0.25 to 2 s, showed that our method consistently outperforms other approaches yielding relative improvements of 20-51% and 15-30% over baseline GMM and the LDA-GMM systems, respectively. (c) 2006 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER | - |
dc.title | Robust speaker identification based on selective use of feature vectors | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.patrec.2006.06.009 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | PATTERN RECOGNITION LETTERS, v.28, no.1, pp.85 - 89 | - |
dc.citation.title | PATTERN RECOGNITION LETTERS | - |
dc.citation.volume | 28 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 85 | - |
dc.citation.endPage | 89 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000242552900010 | - |
dc.identifier.scopusid | 2-s2.0-33750470047 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | short-segment speaker identification | - |
dc.subject.keywordAuthor | speaker model construction | - |
dc.subject.keywordAuthor | feature vector selection | - |
dc.subject.keywordAuthor | linear discriminant analysis (LDA) | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.